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Abstract

In many developing countries, access to electricity remains a significant challenge.
Electrification planners in these countries often have to make important decisions on
the mode of electrification and the planning of electrical networks for those without
access, while under resource constraints. To facilitate the achievement of universal
energy access, the Reference Electrification Model (REM), a computational model
capable of providing techno-economic analysis and data-driven decision support for
these planning efforts, has been developed.
Primary among REM’s capabilities is the recommendation of the least-cost mode of
electrification - i.e by electric grid extension or off-grid systems - for non-electrified
consumers in a region under analysis, while considering technical, economic and envi-
ronmental constraints. This is achieved by the identification of consumer clusters (ei-
ther as clusters of off-grid microgrids, stand-alone systems or grid-extension projects)
using underlying clustering methods in the model.
This thesis focuses on the development and implementation of partitioning algorithms
to achieve this purpose. Building on previously implemented efforts on the clustering
and recommendation capabilities of REM, this work presents the development, anal-
ysis and performance evaluation of alternative approaches to the consumer clustering
process, in comparison with REM’s previously incorporated clustering methodology.
Results show that the alternative methodology proposed can compare favorably with
the hitherto implemented method in REM. Consequently, the integration of the pro-
posed network partitioning procedures within REM, as well as some potential future
research directions, is discussed. Finally, this thesis concludes with a discourse on
the social and regulatory aspects of energy access and electricity planning in develop-
ing countries, providing some perspectives on the development policies and business
models that complement the technological contributions of this work.
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Chapter 1

Introduction

1.1 Background and Context

In many parts of the world, access to basic electricity services remains a significant

challenge. In fact, in 2015, the International Energy Agency (IEA) estimated that

about 1.1 billion lacked access to electricity [5]. The scale and intractability of the

energy access challenge has drawn a lot of attention in recent years. For instance,

in addition to traditional electrification strategy by grid-extension, off-grid micro-

grids and stand-alone home systems have recently gained momentum as effective,

alternative ways of providing access to energy. The proliferation of these technologies

has also resulted in the rise of novel business models for facilitating access. For

example, the Pay-As-You-Go model, which involves credit repayment via instalments,

has allowed customers of solar home system companies to bypass large upfront costs

in East Africa and gain access to electricity services [65]. Off-grid offerings such as

these complement the extension of the existing distribution grid, to areas without

access, by the utility or rural electrification agency.

Critical to the success of these efforts is planning. In developing countries where

energy access remains a problem, the planner is typically faced with complex decision

making while under several technical, economic, regulatory and political constraints.

Developed countries typically have electrification rates of 100 percent with the utility

planning process focusing on infrastructure reinforcement to meet demand growth
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or to fortify the grid with advanced ICT. In developing countries, the situation is

typically different. Many developing economies, such as India and many sub-Saharan

countries, have significant amount of their populations who are unserved or under-

served by electricity; in India, this population was estimated at about 230 million

people in 2016 [5]. Many of these unserved parts of the population largely reside in

rural areas which may be far from load centers and where the cost of electrification

from the grid may be very significant. In addition, electric utilities and governments

typically have a universal service obligation to provide electricity to consumers on

demand as electricity is considered a human right. This means that the planner in

these countries has to make decisions on what mode of electrification, how to electrify

or design any networks, for millions of people while aligning with national electricity

policies.

On the technological end, there have been many efforts at building software tools

to aid electrification planning for energy access. Computational techniques can pro-

vide enabling data-driven platforms to analyze these planning efforts and to support

data-driven decisions for large-scale electrification projects. For instance, the planner

can utilize software tools to understand the most economical way to electrify a large

amount of consumers in unserved or underserved regions, to simulate network growth

and understand reinforcements required, to design optimal networks, to understand

the trade-offs between energy sources and undertake optimal generation system de-

sign among others. Recent advancements in computational processing capabilities

and techniques mean that many of these decisions can now be made more data-

driven and undertaken for large-scale regions, often involving millions of consumers

and within relatively short time periods.

The Reference Electrification Model (REM)1 is one such computational model,

which undertakes network designs and provides recommendations for mode of electri-

fication - i.e. whether as electrical grid extension projects or off-grid microgrid clusters

1REM is a software developed at the Universal Energy Access Lab at MIT and IIT-Comillas
University see: universalaccess.mit.edu/REM. REM is referred to multiple times in this thesis,
especially with respect to the research work done by previous/other graduate researchers in the
group on its development.
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- based on technical and economic constraints. The identification of consumer clus-

ters (either as clusters of off-grid microgrids, stand-alone systems or grid-extension

projects) is central to these recommendation and network design capabilities of REM.

This thesis builds on the body of work in this area, in particular the multiple

contributions incorporated in the Reference Electrification Model, providing addi-

tional tools and perspectives for computation-aided electricity planning. It focuses

specifically on two important decisions made by planners; the decision of the least-

cost electrification mode for consumers and the clustering of consumers, showing how

computational techniques can aid these decisions.

It is important to note that even in the adoption of the technical tools developed

and discussed in this thesis, significant regulatory and socio-political barriers to energy

access and mobility remain, which must be overcome. This thesis therefore addresses

some of those barriers as well and provides recommendations on how they may be

overcome or mitigated.

1.2 Motivation

It has been mentioned that REM is able to provide recommendations on the least-

cost electrification mode - i.e. whether as electrical grid extension projects or off-

grid microgrid clusters - based on technical and economic constraints. In the hith-

erto implemented version of REM, this clustering and recommendation capability is

achieved via a “bottom-up” agglomerative procedure whose development has been

extensively discussed in [28] and [30]. This “bottom-up” method, as incorporated

in REM, has also been tested on several electrification planning application cases,

such as in Rwanda, Uganda and India [24] [28] and [30]. We refer to this approach

as “bottom-up” since we start by assuming that each consumer is in its own cluster

before systematically merging consumers based on least cost electrification modes.

Ultimately, this “bottom-up” agglomeration procedure allows us to identify and des-

ignate consumers as either off-grid stand-alone, microgrid clusters, or grid-extension

candidates. Such an approach contrasts with the “top-down”, network partitioning
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approaches which this thesis proposes. Rather than starting at the individual con-

sumer level, a “top-down” approach involves starting at the network level with all

consumers connected to the grid. With all consumers connected to the grid, the ob-

jective then becomes identifying which consumers are better disconnected from the

grid into off-grid clusters based on electrification cost. This leads to the important

issue of how to systematically partition the grid to achieve this, a key question the

research presented herein sought to address.

There are multiple motivations for this work. One motivation for the examination

of alternative approaches such as network partitioning or “top-down” methods to

electricity consumer clustering is the nature of rural electrification planning poli-

cies in reality. National rural electrification policies in many developing countries

typically address the provision of off-grid micro-grids in unserved communities as a

‘stop-gap’ till it becomes economically (or politically) favorable to ultimately connect

each off-grid consumer to the grids. Thus, many off-grid microgrids will likely become

grid-compatible or replaced by electric grids, as the grid eventually extends to areas

with no previous grid network existence.

Since grid-extension planning by distribution utilities typically involves solving a

substation facility location clustering problem, a potentially better or more realistic

approach to the analysis of off-grid clusters (and grid-extension clusters) may be to

analyze the clustering problem under the assumption that a future planner will even-

tually run a substation facility location clustering algorithm (via Reference Network

Models or network planning tools) to connect consumers in any present off-grid clus-

ters to the grid. Thus, it may be possible with such an approach that we save on

future network investment or upstream reinforcement costs when the grid eventually

extends and connects to any consumers which we designate for off-grid microgrid clus-

ters in the present time, if we already clustered these off-grid microgrid candidates

considering the entire grid network and possibility of future grid-connectivity.

Another motivation for the work is that by generating clusters from partitioning

a reference network designed by a robust network planner, we can better account

for features and constraints such as topography or forbidden zones in the resulting
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clusters and designs. This is because the original reference network would have been

designed to account for these features and a network-partitioning based clustering

process would inherit these properties.

Finally, there is also a need to benchmark any developed methods by comparing

results obtained from the implementation with those from other more established

methods.

1.3 Thesis Questions

The issues raised in the previous section lead to multiple research questions on the

development of alternative clustering algorithm approaches to the consumer clustering

and electrification mode recommendation problem. Specifically:

• Can robust alternative approaches to the electricity consumer clustering func-

tionality in REM be developed?

• How can distribution networks be partitioned to identify clusters for off-grid

micro-grids and for grid-extension projects which will minimize future invest-

ment costs when future brownfield planning occurs?

• How do any such alternative computational methods developed compare to

currently implemented approaches in REM or in the literature?

• What kinds of regulations, policies or business models are needed to complement

technological solutions such as the Reference Electrification Model in the drive

towards universal energy access?

1.4 Preview

The rest of this thesis is organized as follows. The second chapter presents a review

of existing computational approaches to the electricity consumer clustering problem,

providing an overview of many models and tools for distribution planning such as
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those in the Reference Electrification Model (REM). In Chapter 3, the development

of network-based methods for partitioning non-electrified consumers into off-grid and

grid-connected consumers is discussed. Specifically, the chapter presents some greedy

algorithms which overcome the limitations of previously implemented methods in

REM and in literature by partitioning the distribution network of the future fully elec-

trified region to identify consumer clusters for present planning. Chapter 4 addresses

different methods for clustering consumers who have been designated as off-grid can-

didates into microgrid clusters. Finally, the complementary regulatory environment

for technologically-enhanced universal access is discussed in chapter 5.
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Chapter 2

Existing Computational Tools for

Electrification Planning

As a financially-intensive process subject to regulation and government policies, elec-

trification planning can be a multi-faceted one, involving the collection and analysis of

data, the application and development of models to analyze the expansion of the grid,

the quantification of investment costs and benefits, among other steps. In developing

economies, distribution planning is particularly important and complex because de-

cisions have to be made on how to electrify unserved and underserved communities

while catering to increasing demand. To this end, there are a number of tools which

have been developed and applied for distribution planning. This chapter provides

an overview of some of these tools and reviews a number of computational methods

related to those explored in this thesis.

2.1 Urban Electrification Planning

2.1.1 Commercial Urban Distribution Planning Tools

Simaris, developed by Siemens AG, is one example of one commercial software utilized

for planning distribution [1]. In addition to technical simulations, Simaris provides

information on space requirements and estimates the budget required for an urban
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distribution planning project, taking inputs of the network and intended switchgear

equipment. ETAP, under its ETAP Grid platform, also offers a similar software for

the modeling, expansion planning and analysis of smart urban distribution networks.

Unlike Simaris, ETAP Grid incorporates Geo-Informatics System (GIS) capabilities

which allow the user to visualize and analyze the network geospatially. It however

does not incorporate financial analyses [33].

2.1.2 Academic Research on Urban Distribution Planning

There are also many examples in the body of literature on the development of meth-

ods or tools for urban distribution planning. In general, these research works focus

on the optimization associated with greenfield distribution network planning, with a

number of objective functions seeking to minimize investment or system cost, sub-

ject to technical constraints such as connectivity, reliability and voltage and thermal

limits. [8] [11] [50] [51] [58] [71] present some of those approaches. In [50], we see

the distribution planning problem formulated as a two-stage mixed-integer optimiza-

tion problem to minimize investment and operational cost with nonlinear constraints.

[69] considers network reinforcement costs while [8] considers deployment risks of ex-

pansion plans as part of the objective function. [29] and [63] analyze the expansion

planning problem under the incorporation of Energy Storage Systems.

Many other literature works on distribution planning optimization are reviewed

extensively in [37]. [75] proposes a weighted Voronoi diagram approach to determine

new location and capacities of substations while providing annual cost output. Some

other works of research incorporate distributed generation (DGs) or urban microgrids

into their models for urban distribution planning. For instance, [13] [41] [51] [58] and

[71] formulate the network planning optimization algorithms to factor technical is-

sues associated with grid-compatible microgrids such as those associated with large

penetration of DERs in the grid. One of the most interesting applied cases of aca-

demic research on urban distribution planning can be seen in [49] where the network

planning tool developed is integrated with Geographic Information System (GIS) and

Supervisory Control and Data Acquisition (SCADA) platforms, and is applied in the
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actual expansion planning of Shanghai, China. Another important, and perhaps the

most relevant to the Reference Electrification Model presented in this thesis, is the

Reference Network Model (RNM) whose development is discussed in [26]. The RNM

generates street-level designs for distribution planning and has been extensively ap-

plied for actual distribution planning in Europe. The Reference Electrification Model

which has been introduced and is the focus of this research builds on RNM in its

approach to rural electrification planning.

2.2 Rural Electrification Planning

The body of research dedicated to rural electrification planning is significantly smaller

than that for urban distribution planning. Rural electrification planning introduces

additional complexities of how to electrify unserved consumers. It is also important

to note that the countries which often undertake large-scale rural electrification plan-

ning are usually developing countries, which operate under more stringent funding

constraints. There are few rural electrification planning tools, one of which is the Ref-

erence Electrification Model on which this research is based and which is presented

in [30] [17] and [47].

The Network Planner discussed in [44] is one of the most documented computa-

tional tools for geospatial rural electrification planning. It determines if grid extension

is favorable in comparison to microgrids using a modified version of Kruskal’s shortest

path algorithm, finding the shortest paths between potential grid-connected locations.

One of its limitations however is the lack of topography. It also does not provide its

recommendation at the household level, but at a community cluster level. Another

limitation is the lack of network design. [44] shows an application of the Network

Planner to rural electrification planning in Ghana.

[35] describes a GIS-based rural electrification planning tool called LAPER devel-

oped by the EDF. LAPER requires the user to input data on network, geographical

limits and an initial state design for a given community of villages before then proceed-

ing in a step-by-step series of replacement stages - using alternative energy sources
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and configurations - in which it tries to connect as many villages as possible under

the given geographical constraints. Its optimization algorithm seeks to optimize the

global cost of electrification over the entire community of villages i.e. the sum of the

investment and operation and maintenance costs. An interesting feature of LAPER

is the incorporation of the following criteria:

• Political

• Financial resources

• Development

• Financial

• Inter-region balance.

LAPER outputs a GIS representation of the electrification mode. Developed in 2001,

not much is seen in literature of the applications of LAPER besides its original de-

scription in [35].

[27] introduces IntiGIS which takes a different approach to GIS-based decision-

support for electrification planning. IntiGIS calculates the ‘Levelized Electric Cost’

(LEC) of competing technologies (grid, PV, wind, etc.) for each community location

provided and then outputs the most competitive technology for that location based

on LEC calculations. IntiGIS provides this information on a GIS visualization output

and does not provide any network designs [9] [10].

GEOSIM is a commercial rural electrification decision support software devel-

oped by Innovation Energie Development [40]. Like Network Planner, GEOSIM also

incorporates GIS into its approach to least-cost electrification mode recommenda-

tion. Rather than consumer-level designs and analyses, GEOSIM finds ‘development

centers’ within communities using a gravity probability model and determines the

least-cost electrification mode to supply each of these centers. This gravity probabil-

ity model is based on the HUFF model, an established spatial analysis model, and is

represented by the equation below:
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Pij =

λi
d2
ij∑
k
λk
d2
kj

where λ is a measure of the ‘attractiveness’ or ‘gravitation pull’ of one site to

another and dij represents the distance between sites i and j.

GEOSIM takes in a number of technical and economic inputs and also allows for

users to receive outputs on details such as “the percentage of people living in an elec-

trified settlement”. In addition, it also indicates the location of isolated settlements

- settlements that are too far from electrified development centers and it estimates

investment plans to provide power for basic social amenities (school, hospital) in such

isolated settlements [40].

In [18], we see another computational approach to rural electrification. The au-

thors of [18] first review of three other tools for rural electrification; HOMER, Network

Planner and GEOSIM, identifying the various limitations across all three. A multi-

stage procedure for rural electrification planning, which has many similarities to the

Reference Electrification Model in approach, is then presented. For instance, the

authors of [18] consider the following inputs;

• Electrification Status: If not available, [18] proposes inferring through night

lights satellite imagery, existing grid location, census data, availability of de-

centralized power generators, social infrastructure (schools, health facilities)

data.

• Existing grid network.

• Socio-economic data and local resource data.

In addition, [18] presents an analysis of demand alongside above data for ultimate

recommendation of least-cost electrification mode as either grid extension, mini-grids

or stand-alone projects for consumer clusters. Villages are used as consumer clusters

for the analysis and, again, as in [61] and [44], it can be observed that electrifica-

tion mode recommendation is not at household level (as in REM) but at village or

community levels. Furthermore, while the authors of [18] do not delve deep into the
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underlying algorithms behind the various stages of the model/tool presented, the au-

thors provide another paper on the application of the developed software for rural

electrification planning in Nigeria. In [14], the analysis region - the entire country

- was divided into consumer clusters. Consumer clusters were first identified based

on applying a buffer zone of 500m on population raster data sets. The electrification

status of consumers was then inferred based on night lights and data on the grid-

connectivity status of schools in each cluster. Three thresholds are applied for the

determination of least-cost electricity supply option. These are:

• All clusters within a 20-km buffer zone of electrified clusters are to be electrified

by grid-extension.

• All clusters outside the grid extension below a population of 1,000 received

recommendation of Standalone systems.

• All remaining clusters were then recommended to be electrified by PV-based

microgrids.

[14] then concludes by estimating PV capacity required for microgrids based on gen-

eral assumptions about average size per household and load profiles. Overall, 47,489

cluster regions (corresponding to 171 million people) were analyzed and 3,800 clusters

of these were recommended off-grid microgrids.

In [55], another GIS-based rural electrification model is presented and applied to

electrification planning in Ethiopia. The model takes in GIS inputs such as proximity

to grid as well as resources data (solar, wind potential and mining reserves) and

evaluates locational Levelized Cost of Electricity (LCOE) values in making visual

recommendations of least-cost mode of electrification.

The developers of HOMER, a microgrid design, modelling and optimization tool,

also address the issue of determining the least-cost electrification mode by introducing

a metric called the ‘Breakeven Grid Extension Distance’ [31]. This variable is obtained

from other costs and variable values such as the capital recovery rate and the costs

of the grid-extension and the alternative off-grid project. When analyzing a region
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with a few consumers, this distance metric may be compared to actual distance of

the consumers to the grid as a quick way to determine which should be designated as

grid-extension or off-grid [18].

Overall, we see that all the rural electrification planning tools reviewed are limited

in the following:

• The lack of analyses of electrification mode on a building-by-building or consumer-

level basis.

• The consumer groups or ‘clusters’ for analysis for electrification are not computationally-

determined least-cost clusters of consumers. The tools above largely examined

consumer groups for electrification recommendation based on pre-defined nat-

ural clusters such as villages or “development centers”. The limitation of this

is that there may be other possible groupings of consumers for service by mi-

crogrids or grid-extension which may have lower costs per off-grid generation or

grid-extension project.

• The lack of incorporation of technical and geospatial network designs alongside

recommendation mode outputs. REM overcomes the above limitations in its

approach to electrification planning. This work particularly focus on the second

point above i.e. REM’s approach to the identification of clusters of consumers

for least-cost electrification mode recommendation. The next sections of this

review introduce clustering algorithms and more formally define the clustering

problem in the context of rural electrification planning as well as the currently-

implemented approach to clustering in REM.

2.3 The Regional Reference Electrification Model

The development of the Reference Electrification Model has sought to overcome the

aforementioned limitations of existing planning tools for electrification planning for

energy access. REM provides more granularity in its approach to electrification mode

recommendation, by determining the least-cost electrification strategy at individual
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building level. Its clustering algorithms also allow the identification of off-grid mi-

crogrid clusters as least-cost electrification option while incorporating both techno-

economic and geospatial information. Finally, by leveraging the robustly tested Ref-

erence Network Model described in [26], REM is able to both provide final network

designs for all recommended systems and better quantify network costs in its under-

lying recommendation and clustering processes.

REM can be utilized in two modes: as the Local Reference Electrification Model

(LREM) and as the Regional Reference Electrification Model (RREM). The Local

Reference Electrification Model allows users to design individual microgrid projects

and quantify the cost of investment. Given multiple types of input such as economic

data, geospatial information (on location of consumers), LREM is able to provide

both the generation and network design complemented with all cost estimates. It

also has a geospatial output capability and can be made to account for features such

as street/road terrains in the design of the microgrid distribution network.

The Regional Reference Electrification Model is used for large scale electrification

planning where decisions have to made on the mode of electrification for a given re-

gion. In addition to providing electrification mode recommendation to consumers in

a given region i.e. as grid extension candidates, off-grid consumers or stand-alone

systems candidates, RREM also designs the required network and quantifies the cost

of electrification. These utilizations modes have been described in [47] [30] [24] and

[28] . In providing electrification mode recommendations, REM utilizes clustering

algorithms to cluster consumers together and takes advantage of the Reference Net-

work Model (RNM) to design networks and evaluate network costs. A description

of REM’s traditional approach to electrification mode recommendation is presented

later on in this chapter.

The development of LREM and discussions on its applications for off-grid mi-

crogrid system design are presented in [47]. [30] [24] and [28] focus on RREM. An

overview of Regional REM and the underlying methods used in the model develop-

ment are presented in [30]. Some preliminary results of applying RREM for large scale

electrification planning are also presented. In [24], improvements on the underlying
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methods are described with additional applications of REM for regions in Rwanda and

Uganda. [24] also addresses methods for the estimation of electrification status and

for the quantification of upstream reinforcement. [28] focuses on work done to adapt

REM to terrains with significant topography challenges. Inspired by the topographic

feature of the RNM and using Rwanda as a case study, the author of [28] describes

a methodology to incorporate topography to the model. Rwanda serves as a great

case-study for evaluating topographic-handling capabilities since its location at the

East African Plateau means a lot of the landmass lies on challenging, hilly terrains.

It should be noted that the methods presented in this thesis complement other REM

development efforts such as the afore-described. In particular, this thesis focuses on

alternative clustering and recommendation methods to that presented in [30] [24] and

[28]. Before presenting these methods, several applications of clustering within the

context of electricity network design and planning are reviewed and discussed.

2.4 Clustering Applications in Electricity Network

Planning

2.4.1 Overview: Clustering Algorithms

Clustering algorithms seek to group data points together based on some measure

of similarity. As an unsupervised machine learning method, clustering algorithms

explore the structure of data points (such as proximity of points) based on a number

of approaches and have been applied to a number of problems across various domains

from healthcare to network design and transportation analysis [7] [73] [36]. Generally,

from literature, the following classes of clustering algorithms can be observed:

• Connectivity-based/Hierarchical Clustering Algorithms: Hierarchical clustering

involves the creation of clusters from the recursive merging or division of clusters

in either a ‘bottom-up’ or ”top-down” manner [7]. The clustering process for

this type of algorithms can be represented by a dendrogram. There are two

approaches to connectivity-based clustering:

27



– Agglomerative Clustering: This is a ‘bottom-up’ approach in which ev-

ery point is assumed to be in its own cluster and clusters are successively

merged together based on distances. The order of complexity of this algo-

rithm is at least O(n3).

– Divisive Clustering: This is a disconnection, top-down based clustering

approach in which all nodes are initially assumed to be connected into one

large cluster and then splitting occurs based on some measure of distance

dissimilarity.

• Partitional Clustering Algorithms: These are largely centroid-based algorithms

which often require the user to input the number of clusters. They work by

initializing a partition and moving through various partitions to find the clus-

tering configuration that minimizes the overall dissimilarities. It can be seen

that this is an NP-hard (non-deterministic polynomial time hard) optimization

problem and so many partition algorithms utilize approximate solutions:

– K-means Clustering: This is an error-minimization partitional clustering

algorithm which seeks to minimize sum of Sum of Squared Error as follows:

J = argmin
N∑

n=1

K∑
k=1

||xn − µk||2 (2.1)

– Other partition methods also include the K-medoids algorithm as described

by [15] which uses datapoints as centers and can work with any distance

metric. These partition methods in general are limited in their ability to

obtain concave clusters and do not scale well on differently-sized clusters

[43].

• Density Based Methods: Density based Methods determine clusters based on

the definition that clusters are areas with higher probability densities than oth-

ers. The Density Based Spatial Clustering of Applications with Noise (DB-

SCAN) Algorithm is a primary example of this approach to clustering and has

been widely used in geospatial clustering [43]. [43] however identifies some lim-
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itations to DBSCAN as they show it cannot effectively find clusters of different

density.

• Model-based clustering with neural networks (self-organizing maps in particu-

lar) and decisions trees which are good at characterizing each cluster but may

not scale effectively to large data sets [62].

• We find some grid-based and soft computing based methods such as Fuzzy

clustering, Genetic Algorithm clustering discussed in [62].

2.4.2 Clustering in Electrical Networks: State of the Art

Clustering algorithms have been applied in a number of ways in electricity networks.

One major application area of clustering algorithms has been in network planning.

The area of network expansion planning has attracted a number of computational

methods in the attempt to minimize network costs while determining locations of

substations [38] [57]. In [38], k-means clustering algorithm is parsed recursively along-

side a network planner too as part of a heuristic approach for the optimal planning of

greenfield MV/LV substations and network. The authors of [53] apply fuzzy C-means

clustering (however, with predefined number of clusters) for a distribution system ex-

pansion planning optimization problem in contrast to the evolutionary algorithmic

based approach seen in [52]. Gray theory is also another approach which has been

applied to this problem [74]. The authors used it to determine energy saving po-

tential measures, which then feed into a distribution network planning optimization

formulation. In [23], the network partitioning problem in which graph-theoretic net-

work clustering algorithms are used to partition a power network under ‘electrical

distance’ constraints, is presented. The authors of [23] apply a hybrid-k-means to

solve the multi-objective optimization clustering problem proposed. In addition, an

application of a heuristic algorithm - ‘imperialist competitive algorithm’ - for optimal

boundary clustering of urban microgrids can be seen in [56]. These examples show

that partitioning or clustering algorithms have been extensively applied to electricity

networks in general in literature albeit not much is seen in the specific context of
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rural electrification planning as in REM.

Finally, this subsection is concluded with a discussion on a class of combinato-

rial optimization problems, from the operations research or optimization community,

which closely approximate the off-grid clustering objective of rural electrification; the

Facility Location Clustering Problem with unknown number of facilities. Facility

location optimization has been extensively studied in computer science and opera-

tions research. This refers to the problem of locating facilities (for our case - off-grid

microgrids) to serve a number of consumers while minimizing costs. For an off-grid

microgrid, the costs to be minimized would be the total investment costs i.e. the

sum of all off-grid generation and O & M cost (‘facilities generation cost’) and the

network costs (‘facilities transportation cost’). Many studies on this class of problem

model situations in which the number of facilities is defined beforehand and the pos-

sible locations are discrete. These problems have been shown to be NP-hard and so

different approximate solutions have been investigated in literature [25] [34] [48] [54].

Thus, computational methods from other research communities may be applicable to

electricity planning problems. For instance, for the case of off-grid electrification, the

modified facilities location problem would be that of a continuous facilities location

problem with unknown numbers of facilities.

2.4.3 Consumer Clustering for Rural Electrification Plan-

ning: The Regional Reference Electrification Model

Within the context of the Reference Electrification Model, the clustering problem as

defined in [30] as “the grouping of customers into candidate off-grid systems and grid

extension projects”. While there are a number of ways to approach this, one that is

discussed in [24] and [30] is a Delaunay Triangulation-based agglomerative clustering

algorithm.
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Implemented Delaunay Triangulation Agglomerative Clustering Algorithm

The implemented Delaunay Triangulation agglomerative consumer clustering algo-

rithm in REM involves dividing the clustering process into two steps:

1. Off-grid clustering

2. On-grid clustering

Under this approach, a Delaunay Triangulation (DT) connecting every consumer of

an analysis region will be built. The preliminary clustering algorithm documented

in [30] utilized a Minimum Spanning Tree instead of a DT. Afterwards, arcs of the

Delaunay are sorted in increasing order of length and evaluated to determine if the

two clusters located at its ends should be joined in one cluster. The assumption here

is that initially all edges(connections) are not activated and so every customer node is

in its own cluster of only that node. Agglomeration occurs when edges are activated

- based on defined parameter comparisons - such that customers at both node ends

of an edge are connected into same cluster. The algorithm loops several times until

no new connection is activated. At the end of this process, the off-grid clusters would

have been calculated. The idea of merging is such that the savings of being together

compensate the extra connection costs. The parameters compared in merging two

clusters may include:

1. The costs of off-grid generation for each isolated cluster.

2. The operation maintenance costs for each isolated cluster.

3. The costs of off-grid generation for the combined clusters.

4. The extra connection costs of an electrical line (equivalent distance) between

two clusters.

5. The operation maintenance costs for the combined clusters.

For the on-grid clustering procedure; the inactive arcs of the DT are reevaluated,

now comparing the cost/savings balance of being connected to the grid together
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against being electrified separately (with at least one of them connected to the grid).

Depending on the most inexpensive configuration for merging, the clusters are joined.

The algorithm loops several times until no new connection is activated. At the end

of this process, the on-grid clusters have been calculated. The costs parameters

compared for off-grid clustering may include:

1. Generation cost of each isolated cluster node.

2. MV/LV transformers costs.

3. Cost of LV (or MV) line that connects two clusters.

4. Costs LV (or MV) lines that goes from the existing grid network to each cluster.

5. Energy cost and non-served energy cost.

6. Operation Maintenance costs of clusters

More comprehensive descriptions of this clustering method, including its imple-

mentation and applications, can be found in [24] and [30]. As raised in the intro-

ductory chapter of this thesis, this approach is limited in its incorporation of the full

distribution network topology which may better capture useful information such as

topography that can be relevant to clustering recommendations.

2.4.4 Conclusions

The review of the body of literature presented above highlighted the different ways

that computational methods have been used for electricity infrastructure planning.

We reviewed several tools which have been developed to facilitate rural electrifica-

tion planning. From the review, we observe that the majority of tools in this space

do not analyze electrification mode recommendation on a building-by-building level.

Also, most approaches do not analyze other ways of clustering existing consumers

into microgrids besides the pre-defined natural village boundaries. It is possible that

considering artificial clusters and analyzing at the building level could lead to lower
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costs in the recommendation results from these tools. The incorporation of other costs

and savings, such as the microgrid network costs, management costs and savings up-

stream, when undertaking electrification mode recommendation is also another area

of weakness observed for most of the tools. Simple heuristics, such as comparing the

offgrid generation cost with the grid LCOE values or using distance to grid, may

not lead to the true least-cost electrification planning solution as they fail to cap-

ture other important cost drivers. The latter part of this review chapter introduced

the bottom-up clustering methodology in REM which attempts to overcome some

of the limitations highlighted above. As mentioned, REM has been used for sev-

eral large scale analysis and can provide consumer-by-consumer electrification mode

recommendations. However, it may be possible to improve on REM’s bottom-up

clustering methodology or develop better performing alternatives.

As discussed, there are several opportunities for further work in the area of devel-

oping robust, scalable techniques which building on the computational methods and

tools reviewed, overcome their limitations. For instance, it was highlighted that REM

utilizes a reference network model, the RNM, which can design networks incorporating

features such as topography using well tested underlying clustering and optimization

algorithms. A top-down method to partition the RNM’s output network helps us

not only to better incorporate future grid connectivity but also to take advantage of

RNM’s abilities to design electrical infrastructure under geospatial constraints.

The next chapter therefore presents the development of a top-down computational

methodology for electrification mode recommendation; one involving the partitioning

of the distribution grid connecting all consumers to identify those who should be

designated as off-grid or grid-connected. Subsequently, additional complementary

perspectives to the off-grid clustering problem are also addressed. Considering the

objectives laid out therein, it is pertinent that the developed methods be applied on

datasets from real-world cases and the ensuing results compared with those obtained

from the reviewed methods. This allows us to benchmark the algorithms and to

establish if any of the hypotheses which motivated this work hold. To this end, results

from implementation these methods on test cases are also presented and discussed.
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Chapter 3

Partitioning the Distribution

Network: Greedy Approaches

This chapter presents a number of algorithmic approaches for the partitioning of

electricity consumers in order to identify those to be electrified as grid-extension

consumers and those for off-grid consumers based on cost. Unlike the computational

approaches to this problem which were reviewed in the previous chapter, the methods

presented herein take a top-down approach by partitioning the distribution network

in order to designate customers to be electrified by either off-grid or on-grid (grid-

extension) projects.

This network or graph-based approach involves first designing a reference distribu-

tion network for the region under consideration such that all consumers are connected

to the existing grid. The designed network represents the ideal future network if all

consumers were able to be connected to the grid and costs were not a barrier. Since

this distribution network is radial, all elements of the distribution network and their

associated properties (such as costs) can then be represented in a tree data struc-

ture for computation purposes. This makes it possible to approach the consumer

bi-partitioning problem (into off-grid and grid-extension partitions) as a tree pruning

problem and explore computational strategies to that effect.

The rest of this chapter describes the development and implementation of algo-

rithms which build on this idea of partitioning the network.
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3.1 Designing the Distribution Network

As previously mentioned, designing the distribution network connecting all consumers

to the grid is the first step in our network-based partitioning procedure. Thus, we

assume that a network planner has a network design routine capable of designing

an optimal (or quasi-optimal)1 reference network for ALL new consumers in a given

region and quantifying the costs of every element in this distribution network. Any

reference network so designed from such a routine can then be assumed to have the

same topological characteristics of the future grid when all consumers become fully

connected to the grid.

There are many examples of such network designing tools2 in literature and a

number of them have been addressed in chapter 2. There are many properties of the

distribution network that can be extracted from a distribution network design rou-

tine. From the topological properties of the network, it is possible to define pointers

which show the hierarchy of power flow, from the grid all the way to the consumers

and through every element in between. In addition to pointers of what is fed by

what, other properties of elements in the network such as the length of line segments,

the geo-location of equipment, the cost of all elements in the network, the voltage

levels and other electrical, spatial and economic properties can also be adequately

represented.

Being able to design the network and quantify properties facilitates the representa-

tion of the network by an equivalent tree; a capability upon which the ideas presented

in this thesis rests. Thus, we can invoke (repeatedly) a reference network designing

subroutine in order to design the network and subsequently construct an equivalent

tree data structure for our partitioning purpose. A complete equivalent tree should

have all the elements of the network properly represented, providing an important

data structure for implementing many computational methods on the network.

1Network Optimality here refers the fact that the designed network from such a routine is expected
to be the least-cost network.

2In the rest of this thesis, such a network design tool is referred to as a Reference Network Model
or RNM.
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3.2 Tree Data Structure for Radial Distribution

Networks

It has been previously mentioned that since (rural) electricity distribution is hierar-

chical and typically radial, the synthesized optimal network can be represented by

an equivalent tree for computation purposes. Using a tree data structure provides

computational advantage as they are easily implementable and have had many well-

established computation methods developed to exploit their structure. Constructing

the tree involves the provision of pointers from any node indicating key identity of

parent as well as children of given node. For the equivalent trees of radial distribution

networks, three types of nodes exist:

1. Line Segment: Line segments refer to the electrical distribution lines which

distribute power to consumers or transmit from one element in the tree to

another.

2. Consumers: Consumers are the load consumption nodes which ultimately must

be fed and have their demands met. It is easy to see that for the equivalent

tree of a radial distribution network, a node is a leaf node if and only if it is a

consumer node.3

3. Transformers: Transformer nodes are nodes which represent power transformer

equipment for voltage transformation within the network. They link node ele-

ments at different voltage levels together.

3.2.1 Tree Data Structure Terminology

Before presenting the developed algorithms for partitioning the equivalent tree of a

distribution network, it is important to describe standard computation terms used in

describing tree data structures. These include:

3Consumer nodes have no children nodes by definition. Other types of nodes must have children
by definition
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• Root: The root of a tree is the highest node which has no ancestor or parent.

The root node is an ancestor node to every other node downstream.

• Node: As with networks, nodes (or vertices) are one of two types of elements of

trees. Edges are the other type of element and link two or more nodes together.

It is important to note that the definition of ‘node’ here is distinct from the

concept of electrical nodes in circuitry. In this thesis, a node refers to an object

within a tree data structure which represents information corresponding to an

element of the designed distribution network. Thus, the nodes in the equivalent

tree of a distribution network could correspond to information representation

for either a particular consumer, or a line segment or a distribution transformer.

The edges between nodes of the tree then show the information dependencies

between them.

• Leaf: A leaf node is a node which is terminal i.e. has no children nodes.

• Parent: A parent node, with respect to a child node, is a node which has an

outgoing edge to other nodes called its children nodes.

• Child node: A child node (or children nodes) is used in reference to a parent

node as a node which receives an incoming link or edge from a parent node.

• Ancestors: The ancestors of a node are all nodes upstream a node (all the way

to the root) from which incoming edges proceed. Thus the root node of a given

tree is an ancestor node to all nodes in the tree.

• Subtree/Downstream Offspring: The offspring of a node are all nodes down-

stream to the node (all the way to the leaf nodes). The subtree encompasses

the node, children nodes of a node and the children nodes of those children

nodes all the way to leaf nodes. For example, the subtree of the root node is

the entire tree.

Some of these definitions are illustrated in Figure 3.1.
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Figure 3-1: Sample Tree

3.3 Greedy Tree Pruning

Given our objective of partitioning or pruning the network tree to determine the

least-cost electrification mode for every consumer node, a greedy approach to this

problem may be considered. A greedy strategy means that the decision made locally

at a node is the locally optimal one out of the two possible decisions i.e. to prune or

otherwise. At any node, the optimal pruning decision is one determined from a local

evaluation of cost and benefit of retaining the downstream subtree. In deciding that

a node (and the consumer nodes in its subtree) be pruned away and designated as

off-grid consumers, or retained in the tree as part of the grid extension, we compare

the costs with the benefits of the decision. Specifically, the cost of introducing a new

offgrid generation facility if the node and its downstream nodes are pruned must be

less than the savings in cost in the grid from having it removed. For every node

i ∈ N = {1, 2, ...n} in an n-node tree, we can define and compute a decision value δi

which tracks this decision as given by (3.1);

δi = offGeni +offCnsei +netAdmi−upStrmi−onCnsei−gridEci−selfCi (3.1)

where offGeni, offCnsei and netAdmi are the costs incurred if the node’s sub-
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tree is pruned. offGeni is the downstream offgrid generation cost incurred if the

node’s subtree is pruned to off-grid, netAdmi captures the net management cost

in providing off-grid generation rather than the grid while offCnsei is the cost of

non-served energy associated with the resulting offgrid consumers. offGeni is also

implemented such that it can capture the costs associated with the inclusion of an

additional MV/LV transformer should the microgrid associated with the pruned sub-

tree be a large (MV) microgrid.

upStrmi, onCnsei, gridEci and selfCi are the savings or benefits incurred if prun-

ing occurs. upStrmi is the total cost savings upstream if the downstream subtree is

pruned, onCnsei is the cost of non-served grid energy saved if the node’s subtree is

pruned gridEci is the grid energy cost saved after pruning, and selfCi is the self cost

of node i which is saved if the node is pruned. selfCi also captures costs associated

with the electrical losses of the node’s equivalent element. A key assumption in our

definition of δi is that there is negligible difference in network cost before and after

pruning for the downstream subtree consumers. Without this assumption, we would

have to evaluate any gains in the overall network cost as a result of pruning and factor

it in the computation of δi.

If δi < 0, then pruning is the locally optimal decision and is undertaken. An ex-

haustive search on all nodes in the tree, in a bottom-up fashion, can be undertaken

until no further pruning is possible. Consumer nodes that are pruned can then be

designated as off-grid customers while those still remaining in the tree are designated

as grid-extension consumers.

In addition, the following criteria should also be met:

• Bottom-up Traversal: The tree must be traversed in a bottom-up fashion. That

is, the exploration begins from a leaf node and all nodes must be examined

before their ancestors.

• Pruning decisions are irreversible.

It is possible to traverse the tree in different ways such that the bottom-up criterion

is satisfied. This leads to another question; how does the order of traversal affect

40



solutions? This is a salient question since some node elements of the tree have discrete-

sized values as they were based on a standard catalog. For example, the order of

removal of a 15kVA standard-sized transformer from a tree may significantly affect

subsequent pruning decisions, since the node was discretely sized. Further discussion

on how discrete catalog data is handled in the context of this work is discussed in

section 3.3.2 of this chapter. For the traversal application at hand, one might expect

that exploring nodes that are farthest from the root, or have the highest downstream

demand, or both should make good candidates for early pruning. To address this,

two traversal strategies - traversing the tree in order of the distance of path to the

root node & in order of a defined and computed node variable called ‘Moments’ - were

explored. These traversal methods were then bench-marked with a third standard

tree traversal method - the post-order traversal strategy. These traversal strategies

are discussed subsequently.

3.3.1 Tree Traversal

The order in which we visit nodes for pruning may be critical to the partition solutions

obtained from our proposed pruning procedure. Since properties such as distance to

the root and node power capacity, which are considered for pruning, are hierarchical

and subtrees are not visited after a node is visited, it is possible that a node is prunable

but its children are not.

One classic tree traversal technique from literature which satisfies our bottom up

criterion is the post-order algorithm [42]. This is a depth first search method in

which the children of a node are recursively traversed before the node. By recursively

visiting the subtrees of every node before a node, the post-order algorithm guarantees

that the root node is examined for pruning last. This process should generate a list of

nodes to visit based on the post-order depth first search tree algorithm. The structure

of the algorithm to obtain this is as follows:

If the root of the tree is passed as the node argument to the above procedure, the

result List gives us a bottom up array of nodes.

Thus, for a tree such as in Figure 3.2, the post-order traversal strategy yields a
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Algorithm 1 Generic Post-Order Algorithm

procedure ModifiedPostOrder(tree, node, List = [])
childrenCount← number of children of node
if childrenCount > 0 then

for i = 1 to childrenCount do
MODIFIEDPOSTORDER(tree,node.child(i),List)

List.append(node) . append node to List
end for

else
List.append(node)

end if
return List . Final bottom up list is in List

end procedure

Figure 3-2: Sample Tree for Post Order Traversal: Traversal Order is
[Y,X,Z,W, V, U, T ]

list which agrees with our bottom up criterion. This traversal therefore allows us to

benchmark the expected advantages of any heuristics we develop for traversing the

tree.

Distance of Path To the Root Node

The distance of path to the root node or PathToRootLength traversal heuristic is

most intuitive considering the problem at hand. Other factors being equal, it should

be expected that grid-extension costs increases with distances to the grid and conse-

quently farther-off isolated consumers may likely be the best candidates for off-grid.

The distance can therefore be imposed alongside the bottom-up criterion to determine

order of exploring the tree. From a computational perspective, it is easy to define a
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PathToRootLength property for every node which can be updated with each pruning

decision. This is because each node in the tree already represents information on a

corresponding distribution network element and its properties such as its length. The

PathToRootLength property is then the sum of the length properties of all the an-

cestors to the root node, for a given node. A subroutine that computes and updates

this property for nodes in the tree can thus be defined. This subroutine returns the

nodes in order of their PathToRootLength property. To understand how this might

work, consider again Figure 3.2. If such a subroutine is called and it is assumed that

the spatial distribution of nodes in Figure 3.2 are similarly scaled to the real network,

the PathToRootLength would return a list [Y,X,Z,W, V, U, T ].

‘Moments’

While distance to the root seems a good criterion for tree traversal for our elec-

trification problem, there are other important parameters, such as the magnitude

of downstream demand, not captured by such a strategy. Our expectation of any

good traversal strategy is that nodes which are farther from the grid and have higher

downstream capacity are pruned earlier because they imply higher grid costs, and

thus higher savings when pruned. Factoring both the distance to the grid with the

power delivered in the traversal strategy also helps to capture the voltage drop, which

is a very relevant cost driver in real-life distribution network planning.

A node property, Moments, S, which captures this combination of downstream power

and distance to the grid can thus be defined. For a tree of nodes n, the Moments Si

at a node as:

Si = Si ∗ Li +max{Sv1, Sv2, Sv3 . . .}

where Sv1, Sv2, Sv3... are the moments of node i’s children and Li is the length of

node i.

These values can be initially pre-computed as the equivalent tree is constructed

from the designed network. Based on the above, a procedure based on the combi-

nation of power-distance or Moments can be described for identifying the next best

candidate node to pruning evaluation as follows:
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• pre-sort nodes from highest to lowest moments.

• Check sorted array if nodes have had all their downstream nodes explored or

they have no node, if yes terminate tree traversal else go to next node in sort,

proceed.

• Return next best candidate node for pruning as highest value in sorted nodes

array.

The two traversal strategies described above were implemented and are described

in section 3.4 of this chapter. Also presented are results of implementation of the post-

order traversal method as a benchmark for performance evaluation of the distance to

root and post order method.

3.3.2 Partitioning Algorithm I.

Given an order to traverse the tree for pruning and the local decision criterion as in

equation 3.1, an overall partitioning procedure for pruning the tree can be described

as in Algorithm 2.

In Algorithm 2, all consumers are initially connected to the grid-extension parti-

tion Songrid while the offgrid partition Soffgrid is empty. For every node i visited in the

tree, the local decision variable δi is computed and, if negative, the downstream con-

sumer indices are appended to the offgrid partition Soffgrid. The tree properties are

then updated and the process is repeated until all nodes have been evaluated. Recall

that the downstream offgrid generation cost incurred is offGeni while offCnsei is

the Cost of Non-Served energy (CNSE) of node i’s downstream consumers if offgrid.

In addition, upStrmi, onCnsei, gridEci and selfCi are the upstream savings, the grid

cost of non-served energy, the grid energy cost and the node self cost respectively.

The downstream generation cost offGeni is computed by simply calling a genera-

tion design function or look-up table using node i’s subtree consumer nodes properties

as arguments. The look-up table function has already been previously incorporated

in REM as described in [30]. The grid cost of non served energy onCnsei and grid en-

ergy cost, gridEci are similarly determined by invoking these downstream consumer
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Algorithm 2 Network Partitioning Algorithm I

procedure GreedyPrunDelta
tree← construct network tree procedure . tree has n nodes
Soffgrid ← ∅
Stotal ← {1, 2, ...k} . all k consumer initially grid-connected
while all nodes in tree have not been evaluated do

i← get Next Terminal Node to Evaluate

δi = offGeni+offCnsei+netAdmi−upStrmi−onCnsei−gridEci−selfCi

set node.evaluated as True for node i
if δi ≤ 0 then

Listi ← obtain Set of consumers’ indices in subtree of i
Soffgrid ← Soffgrid ∪ Listi
prune subtree of node i
update tree

end if
end while
Songrid ← Stotal \ Soffgrid

return Soffgrid, Songrid

end procedure

node data to functions which then compute them as documented in the agglomerative

‘bottom-up’ clustering based version of REM [30]. The upstream savings upStrmi

penalizes pruning that lead to little savings in cost of upstream grid infrastructure.

To compute this, we evaluate the cost differences in all the ancestors to node i before

versus after pruning.

Note that it is important to update upstream tree properties of the tree after

pruning to account for the expected changes in a distribution network. Some proper-

ties of other nodes in the tree may change due to the removal of downstream nodes.

Specifically, the following two properties need to be updated:

• Power capacity: When nodes downstream are pruned, capacity of upstream

ancestor nodes should reduce correspondingly.

• Self Cost: This is typically a function of the power capacity.

These two properties may also affect other node properties such as the moments

and path− to−root which are used to identify next best pruning candidate. They are

also highly discrete properties, which means that the use of discrete versus continuous
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values when they are being updated from catalog must be considered. This is because

cost and capacity in the distribution equipment catalogs, are stored in discrete values.

For instance, transformer capacities may be cataloged as 5, 7.5, 10, 15, 25 kVA.

However, as an example, the updating process may lead to a capacity value of 6.8kVA

and its associated cost. We handle this discrete-continuous distinction with a number

of heuristics. For instance, the continuous capacity is used to obtain discrete values

for the self costs (during the update process and the computation of δi). Continuous

cost values are used when computing upstream savings from cost differences.

Thus, updating the power capacity and self cost may lead to the existence of a

different, lower-cost tree topology that connects the remaining nodes. Consequently,

an ideal update of the tree structure would be a re-design of the network/tree (with the

RNM) using the remaining tree consumer nodes after every pruning. This, however,

may not be time-feasible in practice, under large scale planning conditions. Section

IV of this chapter further addresses the tree updating process and the algorithm

implementation heuristics.

Executing Algorithm 2 returns the partitions of consumers designated as off-grid

and grid-extension consumers. Passing the grid-extension consumer partition to a

network design module (RNM) allows us to obtain final grid-extension network de-

signs, one of the objectives of REM. For the off-grid consumers list, we can then run

an additional off-grid clustering procedure to cluster these off-grid consumers - based

on total cost - into different microgrid clusters before then designing their associated

off-grid networks. Chapter 4 of this thesis addresses the off-grid clustering process as

specific to REM and in general.

.

3.3.3 Partitioning Algorithm II

Another greedy method which has been explored involves defining a proxy for the

decision value, pre-computing this decision value proxy for all nodes and then greedily

pruning the tree in order of the decision value.

Recall that δi = offGeni+offCnsei+netAdmi−upStrmi−onCnsei−gridEci−
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selfCi where δi can be interpreted as the decision value or ‘net benefit’ of assigning

the downstream consumers of a node i to offgrid. We can therefore define another

greedy strategy as one which we pre-compute δi for all nodes i ∈ N = {1, 2, ...n} in

our n-node tree and then prune accordingly at each node. Using this method, the best

candidate for pruning at each step would be the node with the most negative decision

value while nodes with positive decision values are not prunable. An advantage of

this strategy is that a predefinition of the order of pruning such as using Moments

or PathtoRootLength is unneeded unlike the previously described algorithm.

It should however be noted that since after each pruning the upstream nodes are

updated, we must re-compute delta for all nodes upstream and re-sort before checking

for the next best candidate.

The overall approach can be summarized in Algorithm 3.

Algorithm 3 Network Partitioning Algorithm II

procedure GreedyPrunDeltaCarlos
tree← construct network tree procedure . tree has n nodes
Soffgrid ← ∅
Stotal ← {1, 2, ...k} . all k consumer initially grid-connected
n← count of nodes in tree

for i = 1 to n do . could be in any order
δi = offGeni+offCnsei+netAdmi−upStrmi−onCnsei−gridEci−selfCi

end for
sortedIDs← sort nodes from -ve to +ve δ
while there are still -ve δs & they have not been evaluated do

j ← get next most negative Terminal node index from sortedIDs
set node.evaluated as True for node j
if δj ≤ 0 & node j has not been evaluated then

Listj ← obtain Set of consumers’ indices in subtree of j
Soffgrid ← Soffgrid ∪ Listj
prune subtree of node j
update tree

end if
end while
Songrid ← Stotal \ Soffgrid

return Soffgrid, Songrid

end procedure
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3.4 Implementation: Heuristics and Storage

The algorithms previously described were implemented and tested on a number of

cases in order to understand and comparatively evaluate their performance. Consid-

ering that the methods described in this thesis are expected to be used for real-world

computation enhanced planning via the Reference Electrification Model (REM), it

is important to describe how they were implemented and additional heuristics intro-

duced for scalability.

As is the case with other modules in REM, MATLAB was used as the program-

ming platform for implementing these methods. The following graphic (Figure 3.3)

represents the flow of input to output for partitioning the customers.

Figure 3-3: Implementation within REM

The top − down procedure(s) first receives input data for both consumers and

network, in addition to configuration parameters, storing them as internal variables

in MATLAB. A call to the RNM for network design is then made using these inputs

and other external RNM-specific files. The network design produces network files

such as .shp and .txt files which are then parsed to build the tree data structure.

The tree is implemented via MATLAB’s struct data type with fields of the struct
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corresponding node properties or pointers to parent and children. Redesigning the

tree after pruning will involve invoking the network design subroutine and the external

RNM-specific files alongside the remaining consumers to re-design the network.

In addition, the implementation of Algorithm 2 in MATLAB is achieved with sev-

eral heuristics. Most of these heuristics are related to the tree updating procedure

after pruning. Recall that after pruning, upstream effects are updated with the self

cost, power capacity and the self losses of upstream nodes updated. The approach

to updating the self cost and power capacity values involve piece-wise linear inter-

polation using the user-provided network equipment catalog data. This is because

actual elements are discrete, and we need to pass on smooth cost signals, as order-

independent as possible, when traversing and pruning the tree. Losses can also be

similarly linearly interpolated.

The frequency of re-design of the network/consequent reconstruction of the tree

after pruning is another parameter that can be varied. Rather than designing a new

network after every subtree is pruned, a user-defined frequency parameter can be

used to control how often the network tree is reconstructed. The user can provide a

value between 0 and 1 corresponding to the fraction of total grid power that can be

pruned downstream before the network is redesigned. The most accurate scenario -

which however has the worst run-time complexity - is thus when the tree is redesigned

after every subtree pruning occurs. On the other hand, the best run-time complexity

scenario - at the expense of accuracy - occurs when there is only a single initial tree

design without any updates after pruning. Real world planning cases will involve

design for millions of consumers, and this user-defined variable can be used to speed

up computation as a trade-off against accuracy.

3.5 Results

To conclude this chapter, we present results of the implementations of the algorithms

described in this chapter and compare results of these implementations to those of

the previously implemented consumer clustering method in REM. First presented
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are results of comparisons of the tree traversal strategies for evaluating pruning node

candidates.

3.5.1 Comparative Analysis of Tree Traversal Strategy

As discussed in section 3.3.1, it may be possible that the order in which the tree is

traversed for evaluating nodes may be significant in the final results obtained. To

determine if any such effects exist and the nature of these effects, the two primary

methods of traversal discussed; Moments and PathToRootLength were compared

alongside a third method PostOrder using a small test case of 520 consumers. Using

the same test case to evaluate all three methods, a sensitivity analysis using grid

reliability as the varying parameter was undertaken to evaluate the performance dif-

ferences (as measured by global costs and spatial characteristics of the partitions)

across the methods. Grid reliability is an important parameter to explore because it

is critical to grid connection as it affects the cost of non-served energy.

Figure 3-4: Test Case 1 (520 Consumers) Result using Moments: 90% grid reliability

Figure 3-5: Test Case 1 Result using PathToRootLength: 90% grid reliability
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Figure 3-6: Test Case 1 Result using PostOrder: 90% grid reliability

Table 3.1: Traversal Method Comparison at 90% Reliability: Test Case 1
Traversal Strategy Offgrid Cost ($) Grid Extension

Cost ($)
Total Cost ($)

PathToRoot 190,293 100,606 290,899
PostOrder 217,214 70,660 287,874
Moments 217,214 70,570 287,783

Figures 3.4, 3.5 & 3.6 show the results of implementing the three algorithms on the

same region using the GreedyPrunDelta procedure. At the same grid reliability of

90%, the three methods show a large amount of overlap in results, appearing visually

similar. Reducing the grid reliability to 85%, the number of offgrid candidate nodes

increases as seen in the following figures:

Figure 3-7: Test Case 1 (520 Consumers) Result using Moments: 85% grid reliability

At 70%, as observable in Figure 3-10, all three traversal methods lead to fully off-

grid consumers, as the very low grid reliability becomes heavily penalized, favoring

off-grid systems.

Quantifying and comparing the total costs (generation and network) across all
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Figure 3-8: Test Case 1 Result using PathToRootLength: 85% grid reliability

Figure 3-9: Test Case 1 Result using PostOrder: 85% grid reliability

methods provides more insight into similarities or difference in their performance.

As seen in Tables 3.1 & 3.2, for the given test case 1 the Moments approach leads

to almost the same total cost as the PostOrder method for this particular test case,

indicating that there exist at least some geospatial distribution of consumers for which

these two methods produce same traversal order.

Table 3.2: Traversal Method Comparison at 85% Reliability: Test Case 1
Traversal Strategy Offgrid Cost ($) Grid Extension

Cost ($)
Total Cost ($)

PathToRoot 273,139 13,571 286,710
PostOrder 271,910 15,168 287,079
Moments 239,833 45,294 285,127
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Figure 3-10: Test Case 1 Result for all methods at 70% grid reliability (All Consumers
Offgrid).

3.5.2 ‘Bottom Up’ - ‘Top Down’ REM Comparison

One of the objectives of this thesis is to explore how top-down based approaches to

the consumer electrification mode recommendation and clustering problem compare

to bottom-up methods such as that previously implemented in REM [30]. To this

end, a larger test case (with 6688 consumers) was selected to study the performances

of these two approaches. Figure 3.11 shows the geographic distribution of these 6688

consumers in the test case region as well as the surrounding existing grid.

Figure 3-11: Consumers Distribution for Test Case 2

For the top-down method, greedyPrunDelta was utilized as the tree partitioning

procedure with the overall REM procedure implemented as presented in Figure 3.2.

The DT-agglomerative method is the same discussed in chapter 2. Figures 3.12 & 3.13

show the final designs using the bottom-up and top-down methods respectively. To
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interprete the visualized results, note that offgrid microgrid networks and standalone

consumers are represented with green lines and purple dots respectively, while grid

extension project candidates are delineated with red and blue lines for the MV & LV

grid network, respectively.

Base Case Results

Using input data provided and user-defined parameters, both approaches were ap-

plied on test case 2. Before undertaking sensitivity analysis (the variation of input

parameters to observe changes in input) on the test case, a reference base case has

to be defined. The sensitive parameters under consideration in the application pre-

sented in this thesis are the user-defined diesel cost and reliability of the existing grid

network. For the reference case, the diesel cost is set at $0.8/L and the grid reliability

at 90%. The grid energy cost value is also set at $0.08perkWh. Running the test

case using these values lead to the results presented in Figures 3.12 and 3.13.

Figure 3-12: Base Case: Test Case 2 Result using Agglomerative ‘Bottom−up’ based
method

As can be observed, the results for this particular scenario and its associated input

data show the top-down partitioning method leading to lower costs. The fraction
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Table 3.3: Base Case Bottom-up Results Summary
System Type Microgrids Isolated Grid All

Number of Customers 0 145 6543 6688
Annual System Cost ($) 0 139,706 3,378,329 3,518,035

Figure 3-13: Base Case: Test Case 2 Result using ‘Top-down’ method

Table 3.4: Base Case Top-down Results Summary
System Type Microgrids Isolated Grid All

Number of Customers 0 175 6513 6688
Annual System Cost ($) 0 115,756 3,330,305 3,446,061

of consumers assigned to off-grid versus grid-extension are also similar. The next

subsections show how this test case responds to variations in certain user-defined

parameters.

Sensitivity Analysis: Diesel Cost

Keeping all other data and parameters constant, the diesel cost was varied and results

examined to see differences and sensitivities of both approaches to this parameter.

Since the diesel cost parameter affects primarily the off-grid generation cost, intu-

itively, higher diesel cost should lead to less microgrid clusters than otherwise. Fig-

ures 3-14 to 3-19 show the diesel cost sensitivity analysis results for both approaches.

For Diesel Cost = $0.7/L, the results are as follows:
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Figure 3-14: Diesel Cost = $0.7/L: Test Case 2 Result using Agglomerative ‘Bottom−
up’ based method

Table 3.5: Diesel Cost = $0.7/L: Bottom-up Results Summary
System Type Microgrids Isolated Grid All

Number of Customers 0 157 6333 6688
Annual System Cost ($) 0 125,336 3,304,488 3,520,583

Table 3.6: Diesel Cost = $0.7/L: Top-down Results Summary
System Type Microgrids Isolated Grid All

Number of Customers 0 161 6527 6688
Annual System Cost ($) 0 128,529 3,327,160 3,455,689
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Figure 3-15: Diesel Cost = $0.7/L: Test Case 2 Result using using ‘Top-down’ method

For Diesel Cost = $0.6/L, the results are as follows:

Figure 3-16: Diesel Cost = $0.6/L: Test Case 2 Result using Agglomerative ‘Bottom−
up’ based method

Table 3.7: Diesel Cost = $0.6/L: Bottom-up Results Summary
System Type Microgrids Isolated Grid All

Number of Customers 3602 234 2852 6688
Annual System Cost ($) 1,707,699 186,807 1,574,481 3,468,986
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Figure 3-17: Diesel Cost = $0.6/L:Test Case 2 Result using using ‘Top-down’ method

Table 3.8: Diesel Cost = $0.6/L: Top-down Results Summary
System Type Microgrids Isolated Grid All

Number of Customers 3960 529 3199 6688
Annual System Cost ($) 1,872,419 422,311 1,295,432 3,500,162

For Diesel Cost = $0.5/L, the results are as follows:

Table 3.9: Diesel Cost = $0.5/L: Bottom-up Results Summary
System Type Microgrids Isolated Grid All

Number of Customers 6233 158 297 6688
Annual System Cost ($) 2,930,615 126,134 159,990 3,216,740

Table 3.10: Diesel Cost = $0.5/L: Top-down Results Summary
System Type Microgrids Isolated Grid All

Number of Customers 5685 170 833 6688
Annual System Cost ($) 2,656,906 135,714 490,731 3,283,352
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Figure 3-18: Diesel Cost = $0.5/L: Test Case 2 Result using Agglomerative ‘Bottom−
up’ based method

Figure 3-19: Diesel Cost = $0.5/L: Test Case 2 Result using using ‘Top-down’ method

The results from the diesel cost sensitivity analysis follow the expected intuitive

trends; decreasing the diesel cost leads to more off-grid consumer candidates. Visually,

both results have significant, though not exact, overlap in recommendations. In

addition, in terms of cost, both approaches also lead to similar values; with the top-

down leading to slightly lower system costs in all but one of the scenarios presented

above.
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Sensitivity Analysis: Grid Reliability

The sensitivity analysis was also repeated using the grid reliability level as the varying

parameter. Intuitively, the expectation would be that at higher grid reliability, there

would be more consumers assigned to the grid extension and vice-versa. Figures 3-

20 to 3-23 show the grid reliability sensitivity analysis results for both approaches.

The results for grid reliability at the reference value of 90 percent has already been

presented.

At 100% grid reliability, the results are as follows:

Figure 3-20: Grid Reliability at 100 percent: Test Case 2 Result using Agglomerative
‘Bottom− up’ based method

Table 3.11: 100 percent reliability: Bottom-up Results Summary
System Type Microgrids Isolated Grid All

Number of Customers 0 34 6654 6688
Annual System Cost ($) 0 27,143 1,909,549 1,936,691
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Figure 3-21: 100 percent reliability: Test Case 2 Result using using ‘Top-down’
method

Table 3.12: 100 percent reliability: Top-down Results Summary
System Type Microgrids Isolated Grid All

Number of Customers 0 37 6651 6688
Annual System Cost ($) 0 29,538 1,829,370 1,858,908
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For grid reliability = 70%, the results are as follows:

Figure 3-22: 70 percent reliability: Test Case 2 Result using Agglomerative ‘Bottom−
up’ based method

Table 3.13: 70 percent reliability: Bottom-up Results Summary
System Type Microgrids Isolated Grid All

Number of Customers 0 161 6527 6688
Annual System Cost ($) 0 128,529 3,327,160 3,455,689

Table 3.14: 70 percent reliability: Top-down Results Summary
System Type Microgrids Isolated Grid All

Number of Customers 198 157 6333 6688
Annual System Cost ($) 90,759 125,336 3,304,488 3,520,583
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Figure 3-23: 70 percent reliability:Test Case 2 Result using using ‘Top-down’ method

As with the diesel cost sensitivity results, the results from the grid reliability

sensitivity analysis follow the expected intuitive trends: decreasing the grid reliability

led to more off-grid consumer candidates. Results from both approaches also have

significant overlap in recommendations with similar cost values. At high reliability,

the top-down led to lower system costs with the bottom-up dominating at lower

reliability for the test case.

3.6 Network Partitioning: Insights and Future Work

Thus far, we have presented computational methods to address the technical aspects

of planning electricity infrastructure for those without access. The review of the

existing computational approaches to this problem highlighted the limitations that

motivated the proposal of network partitioning methodology presented in this chap-

ter. Implementing the proposed methodology, as we have shown, has led to promising

results when benchmarked with the ‘bottom-up’ method incorporated within REM.

This chapter concludes by discussing important insights garnered from the develop-

ment and implementation of the network partitioning algorithms discussed herein, as

well as suggestions on future work in this area.
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• Network partitioning methods depend on the initial layout of the network de-

signed by the network planning software. Sometimes, certain initial network

layouts may lead to less desirable partition results. For example, the combi-

nation of low demand (as in rural areas) with large-sized components (lines

and transformers) and a high number of candidate connection points, may lead

to inadequate layouts. For future work, it may be worthwhile to refine the

partitioning procedure such that it is capable of handling scenarios involving

these.

• Partitioning the network allows factors which may be otherwise difficult to

model, such as savings upstream of the grid due to planning decisions, to be

captured. Upstream Network Reinforcement Costs - including upstream impact

all the way to transmission and generation levels - may also be better incor-

porated using the approach presented and this can serve as an area of future

research work.

• For very large-sized cases, it may be more computationally efficient to parse the

input data to a pre-processing clustering module before running the network

partitioning procedures discussed. This intermediate pre-processing step can be

used to cluster or agglomerate customers into ‘super-customers’ before running

the partitioning procedure. This can lead to significant time savings while

obtaining reasonable, approximate results for these large cases.

• The sensitivity analyses showed that the ‘top-down’ approach led to lower sys-

tem cost values than the ‘bottom-up’ method at relatively higher grid reliability

and diesel cost values and the opposite was also true. Further analysis can be

undertaken to understand the reason for these sensitivity results. Such analysis

can help provide knowledge of what scenarios favor the use of the different meth-

ods, allowing a REM user to select the most suitable method on a case-by-case

basis.

• It was observed that the piece-wise linear interpolation of catalog components,
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used for incremental savings estimation, does not work properly when the small-

est components are used. Thus, in low demand cases, the logic may have to be

refined.
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Chapter 4

The (Off-grid) Electricity

Consumer Clustering Problem

The previous chapter addressed algorithms to partition a group of unelectrified con-

sumers into partitions of grid-extension consumers and off-grid candidate consumers.

This chapter addresses the clustering problem involved after such electrification mode

recommendation has been done; the grouping of the off-grid consumers into off-grid

microgrid clusters. This involves clustering the designated off-grid consumers into

multiple microgrid clusters each served by an offgrid generation facility such that the

overall cost of off-grid electrification is minimized. The following sections describe

several clustering methods investigated to achieve this objective.

4.1 Problem Definition

Given a group of un-electrified candidate houses which have been designated for off-

grid rural electrification, the objective is to obtain clusters of off-grid customers to be

served with microgrid facilities. For such off-grid clusters, the spatial characteristics

of houses and the economies of scale of a power system network mean that the goal is

to connect as many people as possible together to any identified micro-grid generation

center, while minimizing the entire network and investment costs i.e. network cost of

lines and generation investment costs.
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Thus if we identify k off-grid micro-grid clusters of consumers, the objective func-

tion for clustering if interpreted as an optimization problem can be defined as follows:

Minimize:

∑
k

Ck
inv (4.1)

where: Ck
inv is the sum of Ck

net, the total network cost associated with the kth off-

grid microgrid cluster and Ck
gen, the generation cost associated with the kth off-grid

microgrid cluster.

It should be noted that the determination of the generation cost for a given off-

grid cluster of consumer points i.e. the computation of Ck
gen for the kth cluster

of consumers is in itself an optimization problem of optimizing different generation

technology mixes subject to demand and supply constraints of the consumers in the

given cluster. The determination of the network cost of a given off-grid cluster of k

consumer points i.e. the Ck
net is a objective optimization problem in itself which can

be approximately solved/generated by passing the coordinates of the cluster of points

and their associated generation facility into an electrical network planning function

(such as the Reference Network Model previously described) which then takes in

a number of electrical parameters and builds a quasi-optimal network which has

the necessary electrical wires, transformers, and other grid equipment for electricity

supply. From the resulting network, the network cost, Ck
net which is the sum total

of cost of edges (corresponding to cables) and required distribution equipment of the

electrical network graph can then be estimated. This network design functionality as

undertaken by a reference network model requires the following inputs:

• location (such as GPS coordinates) and characteristics of customers, and gen-

eration facilities.

• Technical and economic parameters, including: the discount rate, cost of ohmic

losses, simultaneity factors at each voltage level, maximum voltage drop at each

voltage level, load factors and loss factors in each voltage level.
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• Technical characteristics of network equipment. This includes the following

types of equipment:

– LV, MV, and HV cables,

– MV/LV transformer substations,

– HV/MV substations,

– Capacitors,

– Voltage regulators and other reliability equipment.

Having defined the clustering objective above, described subsequently are some

clustering methods and their implementation in the context of electricity consumer

clustering.

4.2 REM’s Traditional Approach to Clustering

Recall that the greedy ‘bottom-up’ procedure implemented in REM and described in

chapter 2 of this thesis seeks to doubly partition consumers into either grid-extension

or off-grid algorithms in addition to agglomerating similar consumers into clusters.

In [30], an MST based implementation of this approach is presented. The MST

agglomerative algorithm involves first building a minimum spanning tree connecting

all consumers, before then greedily agglomerating consumer nodes at the end of edges

based on a connectivity measure until convergence. In the Reference Electrification

Model (REM), the software whose development informs the work described in this

thesis, the currently implemented off-grid clustering strategy involves building a De-

launey Triangulation instead of an MST to connect all consumers in a procedure

described subsequently.
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4.2.1 A Delaunay Triangulation based Agglomerative Clus-

tering Approach

As previously mentioned, the bottom-up clustering strategy currently implemented

in the Reference Electrification Model involves clustering based on the Delaunay Tri-

angulation (DT). A Delaunay Triangulation is a triangulation planar graph such that

no node is inside the circumcircle of any triangle in the triangulation. Since this

planar graph ensures that every node is connected to at least two edges (the degree >

1), clustering on the Delaunay triangulation rather than the minimum spanning tree

means more edges or linkages are considered in the agglomeration process. Under

this method, all consumers are initially in separate clusters but cluster agglomeration

follows the arcs of the Delaunay. A consumer (or cluster of consumers) can thus be

only be agglomerated with the others only if they at least some member of the other

cluster is linkable to them by a Delaunay arc.

In order to apply the Delaunay Triangulation-based agglomerative strategy for clus-

tering consumers as either microgrids clusters or grid-extension clusters, a formal

definition of a connectivity or edge-activation measure between any two edges and

their associated clusters, examined for agglomeration must be provided.

Given a Delaunay triangulation planar graph G = (V,E) and i, j ∈ V where nodes i

and j are any pair of vertices of the graph connected by an edge, we can define the

following cost parameters;

• The cost of off-grid generation and investment for each isolated cluster (or node)

Ci
gen and Cj

gen on the sides of an edge.

• The total generation and investment costs for the combined clusters as a single

node Ccom
gen .

• The estimated incremental network costs for connection (equivalent line, in-

cluding losses) between the clusters. Cxl.

A binary edge-activation measure Soff
ij can be defined if two separate consumer nodes

or clusters can be agglomerated for electrical connection into a single cluster served
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by the same micro-grid generation facility as follows:

Soff
ij ∈ {0, 1}

Soff
ij = 1,

if Ccom
gen + Cxl < (Ci

gen) + Cj
gen

Soff
ij = 0 otherwise

Under this DT based clustering method, a cluster can be defined as a group of con-

sumer nodes which are part of a connected component subgraph linked by activated

edges.

With this defined, Algorithm 4 below describes the procedure to obtain the off-grid

clusters. It should be noted that the assumption here is that initially all edges (con-

nections) are not activated and so every customer node is in its own cluster of only

that node. Agglomeration occurs when edges are activated - based on defined param-

eter comparisons - such that customers at both node ends of an edge are connected

into same cluster. The edges and nodes of the graph are then updated appropriately

to reflect this.

Algorithm 4 DT Bottom Up Clustering

procedure OffgridBottomUp
DT ← construct Delaunay Triangulation connecting all consumers

sort edges of DT in increasing length order

initialize every consumer into separate clusters

while there are still agglomerable nodes do
evaluate shortest unactivated edge k of DT
if Soff

ij = 1 then
activate edge k
merge clusters on either end of k associated with nodes i&j

end if
end while
return clusters

end procedure

4.2.2 DT Agglomerative Algorithm Implementation

Herein, the results of applying the modified agglomerative clustering algorithm pre-

viously introduced to a small-scale offgrid electrification problem are discussed and
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presented. Input data for the method include geolocation data for 1954 consumers,

as well as information associated with the electrical demand profile for each consumer

and hourly solar insolation data for input to the optimal generation sizing function.

Figure 4.1 shows the geospatial distribution of the different consumers used for Test

Case 2.

Figure 4-1: Test Case 2: Consumers’ Geospatial Distribution (1953 Consumers)

Running Algorithm 4 on these consumers leads to 9 microgrid clusters (visualized

in Figure 4-2) with cost summary presented in Table 4.1.

Figure 4-2: Off-grid Microgrid Clusters Using DT method

The cost summary shows that the generation cost, at almost 90% of the total cost,

dominates over the network cost for this analysis.
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Table 4.1: Cost Results of Algorithm 4 on Test Case: 2

Cost Parameter Cost ($/year)
TotalNetworkCost 117650
TotalGenInv.Cost 975730
TotalSystemAnnuity 1093380

4.3 Other Explored Clustering Methods

Although small, the Test Case provided above has different spatial distribution of con-

sumer locations allowing for comparison and benchmarking of Algorithm 4 alongside

other clustering methods.

4.3.1 K-Means & K-Medoids Clustering

First presented, of the other methods explored, is a generic clustering algorithm -

the k-means algorithm - which minimizes an objective cost function that is different

from the offgrid microgrid cost function earlier defined. The K-means algorithm is

an error-minimization partitional clustering algorithm which seeks to minimize sum

of squared error while also requiring the user to input the number of clusters. As

with many partitional clustering algorithms, it clusters data points by initializing a

partition and moving through various partitions to find the clustering configuration

that minimizes the overall dissimilarities. The k-means algorithm was applied to Test

Case 2 and its outline is briefly described below.

Algorithm 5 K-Means Clustering

procedure K-Means Algorithm
Input data set and number of clusters k
Initialize k cluster centers

while till convergence do
assign data points to the closest cluster center

update cluster center based on assignment

end while
return clusters

end procedure

To apply the k-means to these clusters of off-grid consumers, the techno-economic
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network parameters and the associated generation sizing function for the population

were retained. By setting the k value to equal the number of clusters or generation

facilities from the agglomerative clustering case (i.e. k = 9), it is possible to examine

if agglomeration using the defined edge-activation measure leads to lower cost than

purely clustering based on Euclidean distance via k-means; such a comparison would

answer the question of whether the domain-specific approach to clustering lead to a

generic clustering method based on a different metric. It should be noted that the

k-means algorithm leads to a locally optimal solution with respect to an objective

function based on within group sum of squares. It might also be insightful to analyze

and compare differences in cluster visualizations from both approaches.

Figure 4.3 shows results obtained from applying the k-means to the problem.

Using the cluster result from the k-means, the generation and network design func-

tions can be called to determine the cost of the generation facility Ck
gen and network

associated with each cluster.

Figure 4-3: K-means cluster of microgrids visualization

Figure 4-4: Test-Case 2: Designed Off-grid Microgrid Clusters from K-means

The electrical network per cluster of consumer nodes and their microgrid genera-

tion facility can then be designed thus providing the network cost associated with the

cluster, Ck
net. It is thus easy to compute the overall cost by summing the generation
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and network costs over all clusters and comparing with that obtained from using the

previous algorithm.

We see the associated network designs of the microgrid clusters using k-means in

Figure 4.4. The costs associated with this clustering approach are presented in Table

4.2. Visually, the clusters follow what one would intuitively expect if the clusters were

based on proximity. However, comparing the cost results to the DT agglomerative

method shows that the k-means method led to a higher overall system cost. The

result also indicates that most of this cost difference in this case-study comes from

the network cost component. This is not surprising since no direct network input

data fed into the k-means clustering algorithm.

Table 4.2: Costs of Microgrid Clusters Using Generic K-Means Method
Microgrid Microgrid

Network
Cost($/yr)

Mg Gen Inv Cost
($/yr)

Microgrid Total
Cost ($/yr)

mg1 11028 86720 97748
mg2 30592 118900 149492
mg3 32934 140460 173394
mg4 14020 124100 138120
mg5 7901 85030 92931
mg6 12870 77800 90670
mg7 12331 103280 115611
mg8 29551 185070 214621
mg9 11635 76110 87745
Total 162862 997470 1160332

The k-medoids is a centroid based algorithm similar to k-means but which unlike

the k-means involves a data point being chosen as cluster centroid in the course of

the algorithm. The k-medoids algorithm was also applied to the given data-points

and compared, as in the K-means algorithm case, with the agglomerative clustering

approach. Figure 4.5 and Figure 4.6 show the clustering and network design results

of the K-medoids algorithm.

Again, after designing the microgrid cluster network based on this clustering result,
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Figure 4-5: K-medoids cluster of microgrids visualization

the following network design is obtained:

Figure 4-6: K-medoids cluster of microgrids visualization

Table 4.3: Costs of Microgrid Clusters Using Generic K-Medoids Method
Microgrid Microgrid

Network
Cost($/yr)

Mg Gen Inv. Cost
($/yr)

Microgrid Total
Cost ($/yr)

Total 174996 959785 1134781

Similar to the k-means results, the k-medoids clustering results also follow what

one would intuitively expect if the clusters were based on proximity. There is also

significant overlap with that of the k-means result although the overall cost is lower

than the k-means but still higher than that resulting from the DT agglomerative

clustering approach.

4.3.2 Density Based Clustering Approach

Examining Ck
inv which is based on generation and network costs suggests that a

density-based clustering approach may lead to lower clustering costs results. This is

because the network costs are computed from the summation of the costs (‘weights)
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of the designed radial electrical distribution network tree as well as any required

distribution equipment such as transformers designed as part of the network. Thus,

it can be reasonable to expect that clusters with higher density would have shorter

edges and equivalently shorter network costs. While the generation cost is dependent

on the number of consumers i.e. it increases, there are economies of scale associated

with having more consumers per cluster. As discussed previously, the generation cost

is determined by solving another optimization problem to find the minimum cost

combination and value of generation resources (battery or diesel or solar PV) based

on the demand profile of the consumer that would meet the pre-defined reliability

constraints. For consumer nodes of the same type, the generation function (when

called as a look-up table) generates a monotone function with economies of scale.

For example, figure 4.7 below provides a plot of the computed (from the generation

resource oracle function call) per customer generation costs for a microgrid cluster as

the number of consumers in the cluster increases.

Figure 4-7: Microgrid Unitary Generation Cost

Thus, it can be seen that density-based algorithms which favor ‘denser (more

consumers over small area) micro-grid clusters may lead to lower cost solutions than

has been obtained using the previously discussed algorithms. One such density-based

clustering algorithm, the DBSCAN (Density Based Spatial Clustering of Applications

with Noise) Algorithm is applied to the dataset of Test Case 2 to test this hypothesis

and the results obtained are discussed subsequently.

The DBSCAN algorithm, as proposed by Ester et al. [32], designates some
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data points as noise. For the purpose of our clustering problem, we require that

no points are designated as noise and so by varying the two parameters of epsilon

and min points, we can eliminate noise. The epsilon parameter determines how close

points are to be part of a cluster while the min points value controls the minimum

number of neighbours to a point in a cluster. Running the DBSCAN and varying both

parameters, final clustering results for design involved a choice of parameter values

epsilon = 200, and min points =5 and 7 clusters with no noise. As with all clustering

results, the electrical network for the microgrid clusters was designed producing the

following network visualizations:

Figure 4-8: Test Case 2: Off Grid Microgrid Clusters Designed Using DBSCAN
clustering

The costs are also tabulated as shown in Table 4.3.

Table 4.4: Costs of Microgrid Clusters Using DBSCAN
Microgrid Microgrid

Network
Cost($/yr)

Mg Gen Inv. Cost
($/yr)

Microgrid Total
Cost ($/yr)

mg1 530 58534 59064
mg2 105880 556030 661910
mg3 7900 85032 92932
mg4 2790 65977 68767
mg5 2060 60693 62753
mg6 6940 61635 68575
mg7 17410 105140 122550
Total 143510 993041 1136551

It can be observed that the total network cost using the density-based DBSCAN is

less than that from the k-means and k-medoids algorithm, in line with the hypothesis.
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Its network costs are second only to that of the agglomerative clustering presented.

The generation costs are however only higher than that of k-means. The total cost

of the DBSCAN approach is very close to the value as obtained for the k-medoids

which yielded a lower aggregate generation cost value. For a better understanding of

possible approaches using this generic approach to clustering electricity consumers,

different Test Cases with varying geospatial and demand characteristics may need to

be evaluated with the algorithm.

4.3.3 Spectral Clustering

Another method investigated is the application of nearest neighbor based spectral

clustering, a graph-theoretic approach which involves the creation of a similarity/affinity

matrix and a low-dimension embedding on this matrix before clustering in low-

dimensional space. For the results presented below, a similarity-matrix based on

10 nearest neighbors is constructed and the clustering results as applied on the same

data and using the same technical and economic parameters can be seen in Figure

4.9.

Figure 4-9: Test Case 2: Designed Off Grid Microgrid Clusters (10-NN Spectral
Clustering Approach)

The network cost obtained is higher than with the DBSCAN algorithm, although

there is a significantly lower total generation cost and the total cost with the spectral

clustering approach is lower.

These results show that one possible direction for future work would be to explore

spectral/graph cut-based clustering algorithms in which the computation of adjacency
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Table 4.5: Costs of Microgrid Clusters Using 10-NN Spectral Clustering Method
Microgrid Microgrid

Network
Cost($/yr)

Mg Gen Inv Cost
($/yr)

Microgrid Total
Cost ($/yr)

Total 157192 965914 1123106

matrices are based on the parameters unique to the problem such as costs of electrical

lines between two points, or other related parameters.

4.3.4 A Submodularity Clustering Approach

Considering the economies of scale property exhibited by the dominant generation

cost, it may be possible to explore other scalable optimization approaches to this

clustering problem which can take advantage of this property. To this end, we define

below a class of set functions said to be submodular.

Definitions

A set function f : 2V → R is said to be submodular if for any A, B ⊆ V,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (4.2)

The above is the classic mathematical definition for submodularity in which V

represents the ground set on which the function f operates. Submodular functions

can also be defined using incremental diminishing benefits. Under this equivalent

definition, a set function : 2V → R is said to be submodular if, for any A ⊆ B⊆ V

and a ∈ V,

f(A ∪ {a})− f(A) ≥ f(B ∪ {a})− f(B) (4.3)

These definitions express the property of diminishing marginal returns of a utility

function (or economies of scale for a cost function). That is, when a new element is

added to a set of elements, the marginal change in function value diminishes.
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Submodularity in the Electricity Consumer Clustering problem

Submodularity clustering methods have been applied to coverage and facility location

problems in literature [21] [67]. For the electricity consumer clustering problem,

if we define the ground set V as the set of all consumers nodes which are to be

clustered, then we can re-represent the problem as an optimization problem amenable

to submodular clustering techniques.

Recall that the objective function of this clustering problem encompasses the gen-

eration costs and network costs. These two cost elements can be examined separately

for submodular properties.This is because, an important property that is useful for

submodular function optimization problems is the fact that the sum of submodular

functions is also submodular [16]. Using definition (4.3) and the results from the ora-

cle calls of the generation function, it is more straightforwrd to see how the microgrid

generation function is submodular. Examining figure 4.10 shows this.

Figure 4-10: Marginal Generation Cost as Cluster Set Size Increases

Figure 4.10 is a plot showing how the marginal cost of adding an additional mi-

crogrid customer to a microgrid sets is non-increasing. In Figure 4.10, as we add a

marginal customer node {a} to the set A of nodes in a microgrid, the marginal cost

F (A∪{a})−F (A) can be seen to either decrease or stay the same. Thus for any two

sets of microgrid consumer elements, A and B such that A ⊆ B, the following holds:
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f(A ∪ {a})− f(A) ≥ f(B ∪ {a})− f(B), as in definition (4.3).

Note that for an empty set the cost function value is 0.

Also, since the sum of submodular functions is also submodular, the sum of gener-

ation costs of multiple microgrids is still submodular and can lend itself to submodular

minimization methods.

To minimize over a clustering objective function of the sum of both the gener-

ation and network functions like has been done for the other methods described, a

submodular network cost function would be necessary. If it can be shown that the

associated network cost for a set of nodes is also submodular, then the overall cost

becomes a submodular function. The computation of the network cost is however

done by calling a black box network design function (the RNM) and does not readily

lend itself to analysis.

This does not mean that the network aspects of the costs cannot be captured

with a submodularity based optimization approach. Using what is known about

how the network costs are computed by the network function, a proxy function with

submodular properties can be designed on the set. Since the DBSCAN clustering

method explored previously showed that network cost reduced with denser clusters,

a submodular function which leads to denser clusters may capture network costs. If

the location of the generation facility within a cluster of a set of nodes is fixed, a node

with a high marginal network cost in this micro-grid cluster would be one farthest

from the generation facility. Thus, we can define a function on the ground set as the

maximum euclidean distance of the generation facility to nodes.

Again, using definition (4.3), it can be shown that this is submodular as follows.

If the ground set is V , and subsets A and B are chosen such that A ⊆ B ⊆ V , then

under this function definition f(A) represents the maximum distance of the generator

in A to any node in A and is monotone non-decreasing. The resultant cost function

from adding a singleton node {e} to A is f(A ∪ {e}).

Note that f(B ∪ {e})− f(B) ≤ f(B ∪ {e})− f(A)

since;

f(B ∪ {e}) ≥ f(B) ≥ f(A) ≥ 0
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In addition, if the addition of the same singleton node {e} to both A and B is

considered, it can be seen based on the function definition that:

f(B ∪ {e}) ≥ f(A ∪ {e})

since:

A ∪ {e} ⊆ B ∪ {e} and the function is monotone non-decreasing.

In the case where f(B ∪ {e}) = f(A ∪ {e}), then from (4.2) and (4.5),

f(B + {e}) ∪ f(B) ≤ f(A ∪ {e})− f(A) or,

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B)

In the case where f(B ∪ {e}) is strictly greater than f(A ∪ {e}) i.e. when

f(B ∪ {e}) > f(A ∪ {e})

then f(B) = f(B ∪ {e}) . This is because, the defined set function operates as a

max function on set elements. Since f(B∪{e}) > f(A∪{e}), then the argmax element

can not be {e} and is from set B. And since B ⊂(B ∪{e}), then f(B) = f(B ∪ {e})

Since f(A ∪ {e})− f(A) ≥ 0,

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B) = 0

Thus completing the proof.

Thus, a submodularity clustering method can be applied to an objective function

which is the sum of the submodular generation cost and the submodular network

proxy cost. The next section addresses the application of one such method to the

clustering example described in previous sections of this chapter.

Application to Case-Study

Herein, the Test Case 2 offgrid consumer clustering problem is revisited using a sub-

modular clustering approach with the objective function as previously formulated.

Many algorithms exist for getting exact or approximate submodular optimization so-

lutions and they have been extensively analyzed in [19] [20] [66] [67] [72] . In the SFO

MATLAB toolbox described in [45], MATLAB implementations of multiple submod-

ular function optimization methods are also provided for researchers to test some
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common submodular function optimization algorithms. The application described in

this subsection focuses on a greedy method presented in [72] known as the GreedMin.

In [72], GreedMin is proposed as an approximation algorithm to the submodular load

balancing problem with the additional effect of obtaining resulting clusters with sim-

ilar sizes. This load-balancing objective is desirable in a real world off-grid clustering

setting, allowing the planner to have similarly-sized microgrid clusters per generation

facility. A proper review of submodular load balancing in general is provided in [72].

The GreedMin algorithm, as presented in [72], is described below.

Algorithm 6 GreedMin

procedure GreedMin(f,m, V )
Let A1, ...,= Am = ∅
Let R = V
while R 6= ∅ do

j∗ ∈ argminjf(Aj)
a∗ ∈ mina∈Rf(a|Aj∗)
Aj∗ ← Aj∗ ∪ a∗
R← R \ a∗

end while
return {Ai}mi=1

end procedure

Applying GreedMin to the Test Case 2 and setting m to be equal to 9 as in the k

based clustering algorithms previously implemented, clustering results were obtained

which can be seen in Figure 4.11. As expected, the resulting clusters are similarly

sized or ‘balanced’. In addition, some of the clusters visually match those obtained

with other algorithms discussed previously.

The overall costs figures associated with the GreedMin algorithm are shown in

table 4.6. At just $947, 636, it can be observed that the overall generation cost ob-

tained with this method is lower than those obtained with other clustering methods.

The overall clustering cost obtained is also relatively low. These low costs are com-

plementary to the additional observation that the cluster sizes are also more uniform,

or ‘balanced’, a consequence of the load balancing approach. It should be noted that

the submodular clustering approach applied need not necessarily be a ‘load-balancing’

one and an area for future work on this may involve applying or developing other sub-
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modular clustering approaches to this problem.

Figure 4-11: Test Case 2: Off Grid Microgrid Clusters based on GreedMin

Table 4.6: Costs of Microgrid Clusters Using ‘GreedMin’ Method
Microgrid Microgrid

Network
Cost($/yr)

Mg Gen Inv. Cost
($/yr)

Microgrid Total
Cost ($/yr)

mg1 16322 84550 100872
mg2 24215 99565 123780
mg3 31132 102167 133299
mg4 19370 163506 182876
mg5 21097 102910 124007
mg6 8044 102167 110211
mg7 7901 85033 92934
mg8 30070 112576 142646
mg9 11178 95163 106341
Total 169330 947636 1116966

4.4 Chapter Conclusion

In this chapter, the off-grid electricity consumer clustering problem has been exten-

sively examined. Several computational methods from optimization and machine

learning literature were implemented and applied on a test case for comparative anal-

ysis. In particular, clustering spectral and k-center clustering. A greedy heuristic

formulation and a submodular load balancing approach to the clustering problem

were also implemented and presented. The results showed many visual similarities
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and differences as well as in overall costs across methods. For the cases analyzed,

the DT agglomerative method led to lower costs in comparison to the generic clus-

tering methods such as the k-centroid clustering methods. Results also show that

submodularity formulations which exploit the economic of scale properties of the cost

functions associated with this clustering problem may yield desirable results and may

be a promising method for addressing a real-world electricity clustering problem.

Finally, with respect to the overall Reference Electrification Model, the methods

compared in this chapter can be integrated with the top-down network partition

procedures previously presented in the following ways:

• As a post-processing step required after bi-partitioning consumers into grid-

extension and off-grid project candidates. While the current implementation

of the ‘top-down’ method uses the DT Agglomerative algorithm to cluster the

off-grid candidates after partitioning, other methods such as the submodular

clustering approach can be similarly integrated.

• As a pre-processing step before top-down network partitioning is undertaken

for very large case studies. The ideas discussed can be extended to pre-cluster a

data set with a large amount of input consumers into smaller super-consumers,

thereby speeding up computation for these large-sized cases.
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Chapter 5

Discussion and Conclusion

5.1 Beyond Computation-Aided Planning: The Socio-

Regulatory Context of Electricity Access

As mentioned in the introductory chapter of this thesis, the problem of energy access

is a multi-faceted one spanning economic, social, regulatory and technical barriers.

Backed by a powerful computation aided planning tool such as the Reference Elec-

trification Model (REM), a decision maker may still be unable to make requisite

electrification decisions such as investment in the absence of suitable policy and an

enabling business environment. This section examines some of the non-technical di-

mensions of the energy access challenge. Subsequently, some recommendations are

provided which complement the techno-economic analytic capabilities of REM. It is

hoped that these recommendations, if implemented, may ultimately facilitate uni-

versal energy access. Before delving into the recommendations, an overview of the

different stakeholders in rural electrification decision-making is presented.

5.1.1 Stakeholders

The complexity of decision making for energy access is accentuated by the number of

stakeholders in the electrification landscape. For example, there is usually an incum-

bent distribution utility company which ideally is responsible for ensuring universal
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energy access for consumers in the territory of its operation. Utilities in developing

countries are however subject to unique challenges which limit their ability to extend

the grid to those without access. In addition, the consumers to be electrified can

also be regarded as stakeholders since their demand requirements and ability to pay

may affect optimal electrification mode recommendations and can choose to accept or

reject electrification technological offerings. As members of the electorate, consumers

may also inspire the politicization of government electrification decisions, by ensuring

that only governments who plan to make electrification decisions favorable to them

are elected or remain in office [46]. Thus, electrification decision-making in developing

countries may be described as a complex interplay of stakeholders with the consumers

at the center. Some of these decision-makers and stakeholders are discussed below.

Government Energy Departments

The government departments of power/energy in developing countries are in charge of

defining the overall energy policy which will either spur or impede the pace of energy

access. Such government departments may also have designated rural electrification

agencies or parastatals which help execute different rural electrification projects in the

country by providing finance or promoting rural electrification projects. As was high-

lighted previously, sometimes the policy decisions made by the government agency

may be politically motivated or subject to regulatory capture since their decisions

may affect their sustenance in authority and re-election. Government energy depart-

ments, as policy-implementation experts, usually oversee the high-level electrification

decisions of the country which may affect all other stakeholders.

Electricity Regulatory Commissions

As promulgators of regulations which govern the various electricity provision activ-

ities from generation to distribution and retailing, regulators can help accelerate or

mar energy access. For example, the absence of regulations such as those on off-grid

microgrids - a situation in many countries - may affect both intending providers of

energy services as well as potential consumers. Under such situations of regulatory
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absence and uncertainty, energy service providers such as microgrid developers may

be unsure of important factors affecting their businesses such as microgrid standards,

where to locate their microgrids and how to structure remuneration. On the other

hand, the consumers may also not be appropriately protected in the absence of reg-

ulation, and may be exposed to unregulated tarriffs, poor service standards or left

without access as energy service providers go for the least risky and most economic

projects or ”the low hanging fruits”.

The presence of regulation does not guarantee successes and regulatory measures

may sometime have unintended consequences. “Bad” regulation can be a deterrent

to proper investment and may lead to a failure in achieving policy goals and indeed,

this is the situation in many developing countries in sub-Saharan Africa [12].

Electricity regulatory commissions whether at the state level or at the national level

must take care to account for multiple scenarios and stakeholders, making them one

of the most crucial players in the drive towards universal energy access.

Electricity Distribution Companies

Distribution utilities are also major stakeholders in electrification planning and deci-

sion making. Typically, a distribution utility by law is assigned a territory, for which

they are in charge of electricity distribution and the provision of access to electricity

to all consumers within. In line with regulatory standards, the utility’s planners may

then coordinate this distribution activity and obtain remuneration through agreed

tariffs.

Structurally, the distribution utility could be public, as part of vertically-integrated

government utility monopolies, or private or established under a public-private part-

nership. The grid extension activity for energy access is under the purview of dis-

tribution companies and would ideally be a solution for all consumers. However, as

REM demonstrates, solutions which combine grid-extension with off-grid microgrids

and systems may be more economical given the constraints such as tariff ceilings faced

by these utilities and the cost of grid power distribution. Consequently, some of the

off-grid microgrid sites, though under the territories of utilities, may then be served
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by private microgrid developers, raising important questions such as what to do when

the grid eventually arrives and the need for grid compatible microgrids.

In theory, with sound regulation, a planning tool such as REM, and an enabling busi-

ness environment, a single utility may also be able to electrify all consumers using

both grid extension and off-grid electrification strategies. However, many utilities in

developing countries face multiple challenges which hamper both the distribution of

electricity to already electrified consumers, and the extension of the grid to those

without access. Some of these are discussed below.

• High Losses: With values up to as high as 60% for some utilities, the Aggre-

gate Technical and Commercial Losses faced by many distribution companies in

developing countries are typically very significant [70]. This is due to multiple

factors ranging from the prevalence of electricity theft through illegal wiring,

to the continued subsidization of tariffs even in the face of financial challenges.

Thus, collection rates are low for many of these utilities, affecting their bottom-

lines.

• The losses (and associated debt) by these distribution companies mean that they

are unable to meet the power purchase agreement payments from generation.

The distribution companies are reluctant to procure power (due to associated

losses), making the generators run on low capacities. This in turn reduces the

bankability of the generation activity as prospective generation investors are

uncertain of investment.

• Rural distribution for unserved consumers is expensive: in most of the countries

which lack 100% electricity access, the population fraction of people without

access to electricity remains very high, with the absolute number typically in

the millions [4]. While there is a universal access obligation in many national

electricity laws as per the sustainable development ‘Goal 7’ agreed by many

countries in 2015, on-grid connection of these households remains expensive

since the disperse nature of rural, un-electrified households means that rural

electrification is almost universally a more expensive undertaking than urban

90



electrification [2]. At the same time, the willingness to pay for reliable electricity

by many residential consumers in these countries is generally considered low

with some citizens deeming it as a service to be received freely [68] [6] [59]. This

raises the all-important issue of the viability gap and how it can be addressed,

if the electrification of the all un-served population will be undertaken by the

debt-ridden utilities (or the private off-grid developers). The utilities may need

to be subsidized or financially driven by external sources if affordable electricity

will be provided without further burdening the already debt-ridden utilities in

these countries.

• Subsidized, Non-Cost-Reflective Tariffs: In line with social objectives and polit-

ical realities, electricity tariffs across all tiers in developing countries are heavily

subsidized according to the government policy. For instance, in Uttar Pradesh,

the largest state in India and one with 55% rural household electricity access,

agricultural consumers - despite being consumers of relatively large quanta of

power - are highly subsidized in line with government policy since the state is

an agricultural economy-based state [3]. Providing this subsidy through un-

metered power supply has had significant cost implications on the state utility

[39]. In addition, residential consumers are also typically cross-subsidized by

industrial and commercial consumers in many developing countries. Overall, it

is common that the collected remuneration of the distribution company based

on the tariff does not cover the costs without additional compensation.

• Compensation from the government to meet subsidies may be inadequate and

their disbursement delayed by bureaucratic approval processes. This follows

from the previous point. Delayed subsidy compensation combined with losses

and low collection rate incurred may mean that distribution companies struggle

to maintain financial viability [70].

• The tariff remuneration may be designed such that the distribution company

has no incentive to improve the delivered service. It is not uncommon for the

tariff to not be properly designed to reward performance and improved service
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delivery [70]. This coupled with delayed or inadequate compensation from the

government may not provide any incentive for the distribution company to make

extra investments to improve service or extend the grid.

Development Organizations and Financiers

Development organizations have the objective of creating large-scale impact especially

in the all-important area of energy access. These organizations are able to provide

some of the much needed finance for electrification projects and often have to make

decisions such as how much to fund, where to electrify, etc. with these decisions being

those that can be supported with the use of REM. They may, for example, want to

understand how and where to prioritize funding disbursement to ensure maximum

impact.

Another important characteristic of development organizations or banks is the fact

that they are able to have diversified impact that cuts across geographical or national

borders. These organizations typically engage in global development projects and

have experts with understanding of variations in social and political realities across

countries. Development organizations also do extensive market research, collecting,

publishing and updating data and reports on electrification. They can leverage on

these and their alliances with other stakeholders such as governments and the private

sector to achieve impact.

Offgrid Microgrid Developers

Off-grid microgrid developers are typically private sector players with the technical

and economic capabilities to provide electricity services to underserved or un-served

consumers who are not connected to the grid. As such, they are exposed to the various

socio-political and regulatory barriers (or lack thereof) which can affect the viability

of their business models. The decisions made by these developers also include those

on who to electrify and how to electrify from a technoeconomic perspective - ques-

tions that can be addressed with the REM methods presented in previous chapters of

this thesis. In addition to these, they also face risk-related decisions such as how to
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operate in the absence of microgrid regulations and viability when grid is ultimately

extended to the consumers electrified by their off-grid project.

Even when microgrid regulations exist, they may still prove unfavorable to the devel-

opers. Uttar Pradesh in India, where the state electricity regulatory commission - the

UPERC - has made significant effort for universal access by providing regulation on

mini-grids in the state, is an interesting example. The microgrid regulation promul-

gated there categorizes the types of mini-grids that can be regulated into two, with

different regulatory environments governing them. According to this regulation, the

first category of microgrids are typically for villages designated to be permanently

served by off-grid electrification and any developer electrifying these villages would

receive state subsidies with these mini-grids set at state regulated tariffs. In the other

category, mini-grid operators may be deemed free to negotiate for tariffs they desire,

but without access to state subsidies [22]. Grid-arrival remains an issue as under this

regulation; when grid-extension arrives it is the burden of the mini-grid developers

to either negotiate the sale of their assets to the distribution company or continue

operating them at what would probably be unfavorable economic conditions.

In addition to regulatory risks, the off-grid developer may also face other challenges.

By investing in off-grid projects to electrify consumers that are otherwise not eco-

nomically viable, the microgrid stakeholders may have to receive subsidies from the

government or other financiers. Such public-private partnership may also come with

risks associated with the likelihood of bureaucratic delays in subsidy disbursement,

government defaulting or unexpected unfavorable policy change due to political in-

stability.

The challenges with developing sound rural (off-grid) microgrid regulations notwith-

standing, it is still important from a government perspective to regulate these alter-

native electrification solutions. If private microgrid developers are left to negotiate

and charge tariffs as they like, economics dictates they will target the most profitable

consumers or “low-hanging fruits. This would set back the governments social ob-

jectives of achieving 100% access to electricity since the poorest who have the lowest

willingness to pay would be left behind. Off-the-grid solutions are however necessary
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to complement the grid-extension efforts by the governments and utilities. Thus the

government has dual objectives; the creation of an enabling business environment so

that the requisite investment can come in for off-grid microgrid developments and,

ensuring a regulatory atmosphere that also encourages energy access services to the

least economical consumers.

5.2 Recommendations for Viable Business Models

This thesis has so far discussed computation techniques which can greatly enhance

electrification planning. The major stakeholders of the electrification landscape in

developing countries have also been mapped out, with key challenges faced by each

player identified. Achieving universal energy access will require recognition of the

different dimensions of the problem presented. More importantly, it will require the

establishment of enabling environments for business models which can address the

issues to thrive. To conclude this thesis, some recommendations to this effect are

presented below.

• It appears that cross-subsidization is a necessary condition for the viability of

business models and should be encouraged if universal access is to be achieved.

This may be the only way to ensure that the consumers with low willingness

to pay are not left behind. Cross-subsidization schemes that cross-subsidize

consumers with higher willingness to pay or load sizes with those with lower

should be explored.

• Micro-grid regulations are necessary. Minimum quality of service must be es-

tablished. Carefully designed regulations are required if universal access is to be

established. For instance, if, as in the Uttar Pradesh case study raised earlier,

micro-grid developers are left to strike mutually agreeable tariffs with consumers

without regulatory intervention, then it is very likely that there will be some

trade-off in either quality of service or in tariff levels. Since the electricity tariff

level is limited by the affordability of the consumers, the economic proclivity
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of any business in the absence of regulatory interference, is to cut costs and

possibly provide as low quality a service as possible.

• Ex ante regulations must be made without ambiguity and stable. Conditions

for grid compatibility of micro-grids must be provided ahead in addition to

specifications of economic terms such as allowable tariffs. It has been discussed

earlier that uncertainty in regulation can deter necessary investment. A com-

prehensive analysis of sound practices and pitfalls when regulating the electric

power sector can be found in [60].

• Transparency on grid extension plans: It is recommended that publications

of grid extension plans are provided in advance so that micro-grid developers

understand when grid arrives and the uncertainty associated with investment

is reduced.

• Exploration of computation-aided models for least-cost grid extension planning

and determination of micro-grid sites: Computer-aided models can help both

the regulator and government determine high priority sites for off-grid or on-

grid electrification as well as provide symmetric information that aligns private

developers with the governments grid extension. The Reference Electrification

Model can help address this need.

• Replicating Successful Best Practices: Despite beginning operations under chal-

lenging situations such as the high electricity theft losses scenarios described

earlier, some utilities have been able to transition to commercially viable busi-

ness entities through a combination of technological and social practices. For

instance, the joint venture distribution utility in Delhi, Tata Power DDL, has

been able to do just this [64]. In the off-grid sector, some off-grid developers

have had relatively higher success dealing with issues such as payment collection

than others. By replicating best practices from other utilities and developers

and complementing such efforts with the use of a tool like REM for decision

analysis, a utility may be able to provide both grid and off-grid electricity ser-
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vices to all consumers in its region with high collection rates and ultimately

remain viable.

• It might be a good idea to prioritize off-grid microgrid electrification projects

that can drive development and demand growth when disbursing subsidies. It is

important that business models must be sustainable enough for long term and

this would be achieved if the socio-economic status of the consumers are raised

over time such that they are eventually able to pay the true cost of electricity in

future. The government or regulatory body would have to define what features

in a microgrid project can drive growth and demand before promulgating any

regulation on this.

96



Bibliography

[1] Electrical Planning Software SIMARIS - Power Distribution - Siemens,
2017. http://w3.siemens.com/powerdistribution/global/en/

consultant-support/electrical-planning-software/pages/default.

aspx, Last accessed 2017-02-27.

[2] Sustainable development goal 7. United Nations, 2017. https://

sustainabledevelopment.un.org/sdg7, Last accessed on 2018-16-05.

[3] 44% rural households in UP still powerless,
May 2018. https://www.hindustantimes.com/

lucknow/44-rural-households-in-up-still-powerless/

story-tNX5EyIjEHH5ao55G3K07L.html, Last accessed on 2018-16-05.

[4] Access to Electricity: % of Population. World Bank, 2018. https://data.

worldbank.org/indicator/EG.ELC.ACCS.ZS.

[5] International Energy Agency. WEO-2017 Special Report: Energy Access Out-
look. Technical report, IEA, 2017.

[6] Majbaul Alam and Subhes Bhattacharyya. Are the off-grid customers ready to
pay for electricity from the decentralized renewable hybrid mini-grids? A study
of willingness to pay in rural Bangladesh. Energy, 139:433–446, November 2017.

[7] M. Alinci, E. Spaho, A. Lala, and V. Kolici. Clustering algorithms in MANETs:
A review. In 2015 Ninth International Conference on Complex, Intelligent, and
Software Intensive Systems, pages 330–335.

[8] E. M. de Almeida and E. N. Asada. NSGA-II applied to the multi-objective
distribution system expansion planning problem. In 2015 18th International
Conference on Intelligent System Application to Power Systems (ISAP), pages
1–6.

[9] J. Amador and J. Domnguez. Application of geographical information sys-
tems to rural electrification with renewable energy sources. Renewable Energy,
30(12):1897–1912.

[10] J. Amador and J. Domnguez. Spatial analysis methodology applied to rural
electrification. Renewable Energy, 31(10):1505–1520.

97

http://w3.siemens.com/powerdistribution/global/en/consultant-support/electrical-planning-software/pages/default.aspx
http://w3.siemens.com/powerdistribution/global/en/consultant-support/electrical-planning-software/pages/default.aspx
http://w3.siemens.com/powerdistribution/global/en/consultant-support/electrical-planning-software/pages/default.aspx
https://sustainabledevelopment.un.org/sdg7
https://sustainabledevelopment.un.org/sdg7
https://www.hindustantimes.com/lucknow/44-rural-households-in-up-still-powerless/story-tNX5EyIjEHH5ao55G3K07L.html
https://www.hindustantimes.com/lucknow/44-rural-households-in-up-still-powerless/story-tNX5EyIjEHH5ao55G3K07L.html
https://www.hindustantimes.com/lucknow/44-rural-households-in-up-still-powerless/story-tNX5EyIjEHH5ao55G3K07L.html
https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS
https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS


[11] T. Asakura, T. Yura, N. Hayashi, and Y. Fukuyama. Long-term distribution net-
work expansion planning considering multiple construction plans. In PowerCon
2000. 2000 International Conference on Power System Technology. Proceedings
(Cat. No.00EX409), volume 2, pages 1101–1106 vol.2.

[12] African Development Bank. Electricity Regulatory Index for Africa 2018. AfDB,
2018.

[13] C. Barbulescu, S. Kilyeni, A. Simo, and A. Vernica. Distribution system expan-
sion planning with renewable sources. case study: IEEE 33 test system. In 2015
IEEE Eindhoven PowerTech, pages 1–6.

[14] Paul Bertheau, Catherina Cader, and Philipp Blechinger. Electrification mod-
elling for nigeria. Energy Procedia, 93:108–112.

[15] Joe Bible, Susmita Datta, and Somnath Datta. Chapter 4 - cluster analysis:
Finding groups in data. In Krishna Rajan, editor, Informatics for Materials
Science and Engineering, pages 53–70. Butterworth-Heinemann.

[16] Jeff Bilmes. EE595a Submodular functions, their optimization and applications
Spring 2011, Lecture 1, University of Washington, Seattle. 2011.

[17] Yael Borofsky. Towards a transdisciplinary approach to rural electrification plan-
ning for universal access in India. Thesis, Massachusetts Institute of Technology,
2015.

[18] Catherina Cader, Philipp Blechinger, and Paul Bertheau. Electrification plan-
ning with focus on hybrid mini-grids a comprehensive modelling approach for
the global south. Energy Procedia, 99:269–276, 2016.

[19] C. Chekuri and A. Ene. Approximation algorithms for submodular multiway
partition. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, pages 807–816.

[20] Chandra Chekuri and Alina Ene. Submodular Cost Allocation Problem and
Applications. arXiv:1105.2040 [cs].

[21] Sin-Shuen Cheung. The submodular facility location problem and the submodu-
lar joint replenishment problem. In Evripidis Bampis and Ola Svensson, editors,
Approximation and Online Algorithms, pages 71–82, Cham, 2015. Springer In-
ternational Publishing.

[22] Uttar Pradesh Electricity Regulatory Commission. Uttar Pradesh Electricity
Regulatory Commission (Mini-Grid Renewable Energy Generation and Supply)
Regulations, 2016, 2016. http://upneda.org.in/sites/default/files/all/

section/MiniGrid%20regulations%202016.pdf.

98

http://upneda.org.in/sites/default/files/all/section/MiniGrid%20regulations%202016.pdf
http://upneda.org.in/sites/default/files/all/section/MiniGrid%20regulations%202016.pdf


[23] E. Cotilla-Sanchez, P. D. H. Hines, C. Barrows, S. Blumsack, and M. Patel.
Multi-attribute partitioning of power networks based on electrical distance. IEEE
Transactions on Power Systems, 28(4):4979–4987.

[24] Turner Cotterman. Enhanced techniques to plan rural electrical networks using
the Reference Electrification Model. Master’s thesis, Massachusetts Institute of
Technology, 2017.

[25] Derya Dinler, Mustafa Kemal Tural, and Cem Iyigun. Heuristics for a continuous
multi-facility location problem with demand regions. Computers & Operations
Research, 62:237–256.

[26] C. Mateo Domingo, T. Gomez San Roman, Sanchez-Miralles, J. P. Peco Gonza-
lez, and A. Candela Martinez. A reference network model for large-scale distri-
bution planning with automatic street map generation. IEEE Transactions on
Power Systems, 26(1):190–197.

[27] J. Domnguez and I. Pinedo-Pascua. GIS tool for rural electrification with renew-
able energies in latin america. In 2009 International Conference on Advanced
Geographic Information Systems Web Services, pages 171–176.

[28] Cailinn Drouin. Geospatial cost drivers in computer-aided electrification plan-
ning : the case of Rwanda. Thesis, Massachusetts Institute of Technology, 2018.

[29] R. C. Dugan, J. A. Taylor, and D. Montenegro. Energy storage modeling for
distribution planning. IEEE Transactions on Industry Applications, PP(99):1–1.

[30] Douglas Ellman. The Reference Electrification Model : a computer model for
planning rural electricity access. Master’s thesis, Massachusetts Institute of Tech-
nology, 2015.

[31] HOMER Energy. Break-even Grid Extension Distance, 2018. https:

//www.homerenergy.com/products/pro/docs/3.11/breakeven_grid_

extension_distance.html, Last accessed on 2018-16-04.

[32] M. Ester, H. P. Kriegel, J. Sander, and Xu Xiaowei. A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise. December 1996.

[33] ETAP. Distribution Management System, 2017. https://etap.com/

packages/distribution/advanced-distribution-management-system/

distribution-management-system, Last accessed on 2017-02-28.

[34] Matteo Fischetti, Ivana Ljubi, and Markus Sinnl. Benders decomposition without
separability: A computational study for capacitated facility location problems.
European Journal of Operational Research, 253(3):557–569.

[35] R. Fronius and M. Gratton. Rural electrication planning software (LAPER). In
16th International Conference and Exhibition on Electricity Distribution, 2001.
Part 1: Contributions. CIRED. (IEE Conf. Publ No. 482), volume 5, pages 8
pp. vol.5–.

99

https://www.homerenergy.com/products/pro/docs/3.11/breakeven_grid_extension_distance.html
https://www.homerenergy.com/products/pro/docs/3.11/breakeven_grid_extension_distance.html
https://www.homerenergy.com/products/pro/docs/3.11/breakeven_grid_extension_distance.html
https://etap.com/packages/distribution/advanced-distribution-management-system/distribution-management-system
https://etap.com/packages/distribution/advanced-distribution-management-system/distribution-management-system
https://etap.com/packages/distribution/advanced-distribution-management-system/distribution-management-system


[36] C. Fry and S. Manna. Can we group similar amazon reviews: A case study with
different clustering algorithms. In 2016 IEEE Tenth International Conference
on Semantic Computing (ICSC), pages 374–377.

[37] Pavlos S. Georgilakis and Nikos D. Hatziargyriou. A review of power distribution
planning in the modern power systems era: Models, methods and future research.
Electric Power Systems Research, 121:89–100.

[38] L. Gonzlez-Sotres, C. Mateo Domingo, Snchez-Miralles, and M. Alvar Mir.
Large-scale MV/LV transformer substation planning considering network costs
and flexible area decomposition. IEEE Transactions on Power Delivery,
28(4):2245–2253.

[39] M. Gulati and S Pahuja. Direct Delivery of Power Subsidy to
Agriculture in India. The World Bank: SEForAll, 2015. https:

//www.seforall.org/sites/default/files/l/2015/08/SE4All-Direct_

Delivery_of_Power_Subsidy_to_Agriculture_in_India.pdf, Last accessed
on 2018-16-05.

[40] Innovation Energie Development (IED). GEOSIM - home, 2017. http://www.

geosim.fr/index.php?page=home, Last accessed 2017-03-01.

[41] A. Jalali, S. K. Mohammadi, H. Sangrody, and A. R. Karlsruhe. DG-embedded
radial distribution system planning using binary-selective PSO. In 2016 IEEE
Innovative Smart Grid Technologies - Asia (ISGT-Asia), pages 996–1001.

[42] N. C. Kalra and P. C. P. Bhatt. Parallel algorithms for tree traversals. Parallel
Computing, 2(2):163–171.

[43] G. Karypis, Eui-Hong Han, and V. Kumar. Chameleon: hierarchical clustering
using dynamic modeling. Computer, 32(8):68–75.

[44] Francis Kemausuor, Edwin Adkins, Isaac Adu-Poku, Abeeku Brew-Hammond,
and Vijay Modi. Electrification planning using Network Planner tool: The case
of Ghana. Energy for Sustainable Development, 19:92–101.

[45] Andreas Krause. SFO: A toolbox for submodular function optimization. J.
Mach. Learn. Res., 11:1141–1144.

[46] Muralee Krishnan C and Santanu Gupta. Political pricing of electricity: Can it
go with universal service provision? Energy Policy, 116:373–381, May 2018.

[47] Vivian Li. The Local Reference Electrification Model : comprehensive decision-
making tool for the design of rural microgrids. Thesis, Massachusetts Institute
of Technology, 2016.

[48] Ke Liao and Diansheng Guo. A clustering-based approach to the capacitated
facility location problem. Transactions in GIS, 12(3):323–339.

100

https://www.seforall.org/sites/default/files/l/2015/08/SE4All-Direct_Delivery_of_Power_Subsidy_to_Agriculture_in_India.pdf
https://www.seforall.org/sites/default/files/l/2015/08/SE4All-Direct_Delivery_of_Power_Subsidy_to_Agriculture_in_India.pdf
https://www.seforall.org/sites/default/files/l/2015/08/SE4All-Direct_Delivery_of_Power_Subsidy_to_Agriculture_in_India.pdf
http://www.geosim.fr/index.php?page=home
http://www.geosim.fr/index.php?page=home


[49] F. Luo, C. Wang, J. Xiao, S. Ge, B. Yu, J. Wang, Y. Li, and S. Wang. A prac-
tical GIS-based decision-making support system for urban distribution network
expansion planning. In 2009 International Conference on Sustainable Power
Generation and Supply, pages 1–6.

[50] N. N. Mansor. Distribution planning considering network contingencies and
switchgear relocation. In 2016 IEEE PES Innovative Smart Grid Technologies
Conference Europe (ISGT-Europe), pages 1–6.

[51] A. H. Mantway and M. M. Al-Muhaini. Multi-objective BPSO algorithm for
distribution system expansion planning including distributed generation. In 2008
IEEE/PES Transmission and Distribution Conference and Exposition, pages 1–
8.

[52] S. M. Mazhari, H. Monsef, and R. Romero. A hybrid heuristic and evolu-
tionary algorithm for distribution substation planning. IEEE Systems Journal,
9(4):1396–1408.

[53] Seyed Mahdi Mazhari, Hassan Monsef, and Hamid Falaghi. A hybrid heuristic
and learning automata-based algorithm for distribution substations siting, sizing
and defining the associated service areas. International Transactions on Electrical
Energy Systems, 24(3):433–456.

[54] Luis A. A. Meira, Flvio K. Miyazawa, and Lehilton L. C. Pedrosa. Clustering
through continuous facility location problems. Theoretical Computer Science,
657, Part B:137–145.

[55] Dimitrios Mentis, Magnus Andersson, Mark Howells, Holger Rogner, Shahid
Siyal, Oliver Broad, Alexandros Korkovelos, and Morgan Bazilian. The benefits
of geospatial planning in energy access A case study on Ethiopia. Applied
Geography, 72:1–13.

[56] Shahram Mojtahedzadeh, Sajad Najafi-Ravadanegh, and Mahmoud-Reza Haghi-
fam. A framework for optimal clustering of a greenfield distribution network area
into multiple autonomous microgrids. Journal of Power Technologies, 96(4):219–
228.

[57] J. C. Moreira, E. Miguez, C. Vilacha, and A. F. Otero. Large-scale network layout
optimization for radial distribution networks by parallel computing: Implemen-
tation and numerical results. IEEE Transactions on Power Delivery, 27(3):1468–
1476.

[58] G. Munoz-Delgado, J. Contreras, and J. M. Arroyo. Joint expansion planning of
distributed generation and distribution networks. IEEE Transactions on Power
Systems, 30(5):2579–2590.

[59] Debajit Palit and Kaushik Ranjan Bandyopadhyay. Rural electricity access in
India in retrospect: A critical rumination. Energy Policy, 109:109–120, October
2017.

101



[60] Ignacio J. Prez-Arriaga, editor. Regulation of the Power Sector. Power Systems.
Springer-Verlag, London, 2013.

[61] Denis RAMBAUD-MEASSON. Introduction on GEOSIM software for rural
electrification planning, 2017. http://www.ied-sa.com/projects/capredeo/

upload/FI305.ppt, Last accessed 2017-03-01.

[62] Lior Rokarch. Chapter 15: Clustering Methods. In Data Mining and Knowledge
Discovery Handbook. Springer, 2009.

[63] X. Shen, M. Shahidehpour, Y. Han, S. Zhu, and J. Zheng. Expansion planning
of active distribution networks with centralized and distributed energy storage
systems. IEEE Transactions on Sustainable Energy, 8(1):126–134.

[64] M. Singhania and R Kinker. Tata Power Delhi Distribution: Automation vs
Manpower. Vikalpa: The Journal for Decision Makers, 40(1), 2015.

[65] M-KOPA Solar. Pay-as-you-go solar lighting systems slash
household budgets, September 2015. http://www.m-kopa.com/

pay-as-you-go-solar-lighting-systems-slash-household-budgets/.

[66] Zoya Svitkina and Lisa Fleischer. Submodular approximation: sampling-based
algorithms and lower bounds. arXiv:0805.1071 [cs].
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